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Equation for Slip of Simple Liquids at Smooth Solid
Surfaces
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We consider and develop mathematically a new equation for Newtonian fluid flow in the presence of
slip at a solid surface. Slip is envisaged to occur only when a critical surface shear stress is reached, and
once slip begins, it takes place at a constant slip length. Three instances are explored theoretically: slip
possible at one surface only, slip possible at both surfaces with equal facility, and slip possible at both
surfaces with differing facility. Quantitative comparison is made to experiments using the surface forces
apparatus, and it is shown that this new slip model is able to reconcile results from different experimental

studies.

Introduction

One of the ironies of the study of moving fluids is the
long-standing doubt about the appropriate boundary
condition. Itis an empirically driven problem; one hardly
questions that a jet of fluid flows through air with small
frictional loss but that this is impossible for flow through
a pipe. Textbooks and the mathematical descriptions of
fluid flow assign the difference to different boundary
conditions—the jet “slips” through air but “sticks” to the
pipe, in the sense that fluid molecules immediately at the
wall have no net velocity tangent to it.!> These terms are
not to be taken literally, as it would be unreasonable to
expect the continuum description to carry microscopic
information. We mean simply that the continuum de-
scription based on the “no-slip” boundary condition is held
to describe the available data. Similarly, when we refer
to “slip”, we mean that data are inconsistent with “no-
slip”. The statement is not intended to carry microscopic
information.

The “no-slip” assumption, i.e., that the immediate layer
of liquid next to a solid surface moves with the same
tangential velocity as the solid surface itself, is employed
almost universally when analyzing fluid flow past solid
surfaces and stands as the bedrock for much sophisticated
calculation in fluid mechanics. Despite this, there have
been persistent doubts for over a century about its
validity.?~ These doubts have crystallized during the last
3 or 4 years with studies by a number of workers using
several different experimental approaches which show
convincingly that a variety of simple, Newtonian liquids
can slip against solid surfaces.6~16
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In many of these experiments the solid surfaces were
very smooth;6-11.1314.16 thijs is understandable when one
considers that very general arguments predict that the
local instabilities of fluid flow near a rough surface should
promote conditions that, in a continuum description, are
describable by the no-slip boundary condition.* Contrarily,
slip has also been observed when the surface is so rough
that pockets of air are trapped between the surface and
the fluid moving past it.*> Furthermore, for some time it
was believed that slip past very smooth surfaces was
limited to cases where the surface was incompletely wetted
by the fluid, but recent experiments demonstrate that
this is not so. Slip can also occur in instances where very
smooth surfaces are wetted completely by the moving
fluid.814

It has been well-known for many years that some
complex and/or highly non-Newtonian liquids such as
polymer melts show effective slip at solid surfaces, due to
an effective reduction in the viscosity of the fluid layer
close to the surface resulting from shear thinning or
compositional variation.’=2° In these cases, slip has been
successfully modeled by the Navier slip length model,
which in Couette flow treats the liquid as flowing
conventionally against a fictitious surface one “slip length”,
b, below the actual solid surface. This model relates the
velocity at which the liquid slips, us, to the shear stress,
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Figure 1. This figure distinguishes schematically between
the no-slip boundary condition (left) and the Navier constant-
slip boundary condition (right) in oscillatory flow. In both cases
the velocity of the moving fluid (horizontal lines with arrows)
extrapolates to zero. For no-slip, this occurs at the solid wall,
but for slip, it occurs at a notional distance inside the wall and
is finite where it crosses the wall.

s, 0N the liquid at the interface and can be expressed as

1
S b uS (1)

T. =

where 7 is the dynamic viscosity of the liquid. Figure 1
compares no slip and slip at constant slip length sche-
matically.

When slip was found to occur for simple Newtonian
liquids, the results were naturally compared against this
Navier model. However, for slip against very smooth
surfaces, the outcome has been quite variable, with some
workers obtaining results fitting closely to the constant
slip length model®80 but others finding behavior quite at
variance with this model.®1314.16

To help resolve this issue, a simple model for slip is
presented here in which a critical shear stress criterion®!
is broadened to incorporate both a critical shear stress
and a constant slip length criterion. This combined model
is compared with experimental data from a crossed-
cylinder mica—mica surface forces apparatus (SFA) and
also used to reconcile the different forms of slip behavior
seen in existing experimental studies.

Limiting Shear Stress Behavior

A surface forces apparatus was employed to study the
hydrodynamic force generated between a pair of crossed
mica cylinders lubricated by either tetradecane or water
and subjected to oscillatory squeeze. In some experiments
the mica surfaces were chemically modified, either by
grafting on them a lyophobic monolayer of long chain
octadecyltriethoxysiloxane (OTE)® or by adding a surfac-
tant (1-hexadecylamine) to the tetradecane solvent.'®
Contact angle measurements showed that these treat-
ments converted the normally fully wetted mica surfaces
to ones only partially wetted by both test liquids.

For tetradecane between untreated, wetted mica,
measured values of squeeze force were in accord with
conventional Reynolds lubrication theory, which is based
on the no slip boundary condition. However, when the
mica was rendered lyophobic, the squeeze force, W, was
drastically reduced, implying that the tetradecane flowed
more easily from between the approaching mica surfaces
than flow predicted by Reynolds theory. The occurrence
of shear thinning or fluid structuring within the mica
contact could be discounted, since the fluids were simple,
low molecular weight liquids and reductions in squeeze
force were measured even at quite large separations. The
origin of this enhanced flow and consequent reduced
squeeze force was therefore believed to be due to liquid
slip.®
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Figure 2. Figure adapted from ref 9 showing dependence of
f*, i.e., ratio of squeeze force measured in surface forces
apparatus to that predicted from no-slip hydrodynamic theory,
on minimum gap thickness D.?? The system studied was water
between two hydrophobic, crossed, 2 cm diameter micacylinders
at four applied peak squeeze velocities specified in the inset.
At small values of D (denoted as h, in the current paper), the
squeeze force fell progressively below the no-slip prediction of
unity, and this effect was greatest at high squeeze velocities.

This reduction in squeeze force can be expressed
guantitatively by a parameter f* introduced by Vinogra-
dova,? which is the ratio of the measured squeeze force to
that predicted assuming no-slip behavior. Figure 2 shows
an example of the findings for water in which the
parameter f* is plotted against closest separation of the
crossed cylinders. The data show that whereas f* = 1 at
the largest separations (in quantitative agreement with
predictions based on the no-slip boundary condition), below
athreshold separation the measured hydrodynamic forces
became increasingly lower than those predicted from the
no-slip boundary condition. Furthermore, the larger the
peak velocity, the greater the separation at which deviation
from no-slip behavior began. In these experiments, the
peak velocity was defined as the product of the oscillatory
squeeze radian frequency and the oscillatory amplitude.??
A crossed-cylinder contact has the same film geometry as
a ball-on-flat one, and for this geometry, Vinogradova has
solved the equations of hydrodynamic flow for the case of
liquid slip which obeys the constant slip length model of
eq 1 at both surfaces.?® She obtained the following
analytical expression f* (predicted ratio of slip to no-slip
squeeze force)

h h 6b
x — _ 0 _0 SU)
f 3b (1 + 6b) In(l + ho) 1] (2)
In this equation b is the slip length and h, is the
minimum film thickness. The results of the experimental
mica—micastudy as illustrated in Figure 2 were very much
atvariance with Vinogradova's model. Equation 2 implies
that f* should be independent of the squeeze velocity,
whereas, as shown in Figure 2, a strong dependence was
observed. When eq 2 was applied to analyze the results,
slip lengths were obtained that increased rapidly with
increasing squeeze velocity and decreasing film thickness,
to reach values in excess of 1 um.®

(21) Spikes, H. A. Proc. Inst. Mech. Eng., Part J 2003, 217, 15.

(22) Inref 13, the velocity plotted in Figure 2 is the “applied velocity”
(the velocity in the absence of a sample to resist it) and the true velocity
was attenuated by apparatus compliance and hydrodynamic drag. As
also noted elsewhere,? this distinction was not made clear in the text
of ref 13. In the present paper, theoretical predictions are made to the
true, attenuated velocity.

(23) Vinogradova, O. I. Langmuir 1995, 11, 2213.
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Figure 3. Dependence of hydrodynamic force ratio, f*, on
minimum gap thickness predicted from the critical shear stress
for slip model with 7., = 0.3 Pa at four different peak squeeze
velocities. Symbols are same as in Figure 2. Calculations were
performed using the actual attenuated velocities, which were
less than the applied velocity for reasons explained in footnote
22. The inset shows the prediction of the Vinogradova constant
slip length b for slip model (eq 2) at two slip lengths b, 10 and
100 nm. The key point difference is that this model predicts f*
to be independent of squeeze velocity.

A recent interpretation by one of the authors?® has
suggested that these experimental results may represent
notslip at constantslip length, but rather the onset of slip
at a fixed, critical shear stress, 7,. As shown in the
Appendix, the shear stress on the fluid at the solid surfaces
at radius r in no-slip, crossed-cylinder, or sphere-on-flat
contact is given by

7, = —3nwr/h? ©)

where w is the downward squeeze velocity and h the fluid
film thickness at radius r. A critical shear stress model
for slip implies that, so long as the above shear stress does
not reach the value 7., anywhere within the contact, slip
does not occur, but that wherever 7, is reached, slip ensues
at that location to maintain the surface shear stress at 7.
In the sphere-on-flat squeeze contact without slip, the
surface shear stress is zero at the center, rises to a
maximum at h = 4h,/3, and then decays quite rapidly
with distance from the contact center. This means that,
with a critical shear stress model, slip will be confined to
an annular region around the center of the contact, quite
unlike the constant slip length model where it will occur
over the whole film.

For the case of slip at both surfaces, the critical shear
stress for slip model yields an expression of pressure
gradient of the fluid at radius r in the contact of the form?!

. [6nywr 2700
—mm( o h) (4)

dp, _
dr

where the min function represents the minimum value of
the two terms within the parentheses, the first term
corresponding to the no-slip and the second to the slip
condition. Because slip takes place over just some of the
contact, this equation cannot be integrated analytically
toderive asimple expression for the load support. However
numerical integration to yield the pressure, the load, and
f* is very straightforward.

Figure 3 contrasts the form of f* predicted by the critical
shear stress model and the constant slip length model for
the case of slip at two surfaces. The test conditions of
viscosity, ball radius, and squeeze rates analyzed are the
same as those used in a study by one of the authors,® and
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Figure 4. Dependence of hydrodynamic squeeze force ratio on
the surface shear stress parameter S for both experimental
data® (solid symbols) and the critical shear stress for slip model
with 7, = 0.3 (hollow symbols) at all four squeeze velocities
(same symbol shapes for squeeze velocity as in Figure 2). This
representation collapses the data at different squeeze velocities.
Slip begins at h/h, = 1.33 when S exceeds 0.92 (dashed line).
At S values greater than this, an annular region of slip forms,
reaching from very close to the center of the contact out to some
critical radius where the no-slip shear stress falls below 0.3.
The other two vertical dashed lines show the predicted S values
needed for the slipping zone to reach h = 10h, and h = 100h,.

the predictions fit the form of those results quite well for
a shear stress value 7, ~ 0.3 Pa. The model predicts both
the measured dependence of f* on squeeze velocity and
also the quite sharp transition from nonslip to slip seen
in the experimental results as h,was reduced. The location
of this transition is governed by the value of 7., since it
occurs when the maximum surface shear stress reaches
this value. Also shown in the inset of Figure 3 is the
prediction of the constant slip length model of slip at two
slip length values.

Inany model of slip, an important operational parameter
is likely to be the shear stress at the fluid/surface interface.
In no-slip conditions this is given, at gap thickness h, by

181/2 WRO.S h.\3 h_\4\12
=" —\5] — & (5)
hO

where R is the ball radius. The initial group of terms, S
= 18Y23wR%%/h,1% in eq 5 thus summarizes how the overall
contact parameters influence the surface stress. Figure
4 plots f* against S for both the experimental data® and
the limiting shear stress predictions from Figure 3. It can
be seen that this plot collapses data at different squeeze
velocities and provides agreement between measurement
and prediction in the initial stages of slip.

New Slip Model

Unfortunately, while a critical shear stress for slip
criterion describes these experimental results reasonably
well, it is not in accord with studies that have been found
to show slip at a constant slip length. The critical shear
stress model outlined above implies that when slip takes
place, it does so at effectively infinite slip length. Hence
a new model is proposed that combines both features, a
critical shear stress at which slip begins, followed by slip
at a constant slip length. In this case, the shear stress
when slip takes place is given by

+Lus (6)
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Figure 5. Dependence of hydrodynamic force ratio, f*, on
minimum gap thickness for combined limiting shear stress and
constant slip length model (slip at both walls) for wy = 100
nm/s, 7., = 0.3 Pa, and four slip lengths as indicated (open
triangles are b = 1 um but are obscured by the b = 10 um
predictions). Notice that f* is effectively independent of slip
length at b > 500 nm. The inset shows predicted f* for the case
of slip at only one wall (same symbols as main figure). The
predicted influence of slip on hydrodynamic squeeze force is
much smaller in this case.

Possible physical origins of this model are considered
briefly in the Discussion.

The Appendix shows how expressions for the pressure
gradient in the ball-on-flat/crossed-cylinder contact can
be derived for this slip model for the three cases of (i) slip
possible at one surface, (ii) slip possible at both surfaces
with equal facility, and (iii) slip possible at both surfaces
with different facility. The pressure gradient equations
obtained for the first two of these are as follows

(a) Slip possible at one surface only

o, _
dr

. [[6pwr) [6ywr  6b {_@ 3ywr
m'”(( h? )( W htap)| b ))) @

(b) Slip possible at both surfaces with equal facility

. [{6ywr) [6pwr  12b {_@ 3ywr
m'n(( )( he (hrep) h h ))) ©

At a given radius r within the fluid film, the pressure
gradient can have either the first value in the outer bracket
(corresponding to the no-slip case) or the second value
(when slip occurs), whichever bracketed term is the
smaller. The second bracketed term is only numerically
smaller than the first when 3ywr/h? > .. Equations 7
and 8 (and eq A31 for slip with different facility at either
surfaces) can be very easily numerically integrated over
the contact to obtain the pressure field and thus the load
support and f*.

Figure 5 shows predictions of this new model using
several different slip lengths for one squeeze velocity
condition. It can be seen that as the slip length is increased,
the predictions approach one another and also the critical
shear stress model. The inset shows comparable predic-
tions for the case when slip can only occur at one of the
surfaces.

To test the combined model, new SFA work has been
carried out using the fluid ethylene glycol. The mica—
mica crossed cylinders apparatus was the same as that
employed in previous work,® and tests were carried out
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Figure 6. Comparison of experimental and predicted hydro-
dynamic force ratio, f*, versus minimum film thickness for
ethylene glycol (viscosity 17 cP) in two contacts, (i) lyophobic
coated mica on lyophilic uncoated mica (squares) and lyophilic
uncoated on lyophilic uncoated mica (diamonds). In the predic-
tions, assumed slip criteria are 7, = 1.3 Pa, b = 10 um at
lyophobic surface, 7., = 6 Pa, b = 100 nm at lyophilic surface.
The nominal peak squeeze velocity was 100 nm/s, but the actual
value, which was monitored, was reduced at low h, values by
film damping for the reasons noted in footnote 22.

in two conditions, (i) between two mica surfaces where
one was coated with a lyophobic monolayer of dodecane-
thiol on sputtered gold, using methods described else-
where,? (ii) between two uncoated mica surfaces. In both
cases slip was observed in thin film conditions, with slip
occurring more easily in the coated/uncoated case than in
the uncoated/uncoated one. Figure 6 shows the meas-
ured f* versus minimum film thickness for the two cases.
Also shown on this plot is the predicted f* versus h,
behavior for the new slip model based on selected critical
shear stress for slip and slip length values selected to give
good fit between the experimental results and the model.
The experimental results are consistent with slip occurring
with a low 7, value and a large slip length at the lyophobic
surface, quite similar to the values found with tetradecane,
and a higher 7., and lower slip length at the lyophilic
surface. It was not possible to obtain consistent fit to this
pair of results using the critical shear stress for slip or the
constant slip length model, but only with the combined
model.

Discussion

The above work shows that the critical shear stress for
the onset of slip, 7., is quite small, in the 0.1-2 Pa range
for the lyophobic surfaces examined and ~6 Pa for the
lyophilic surface. This may be why it has not been observed
in some studies, since its effect on flow behavior will only
be apparent in low shear stress contacts, while in severe
contact conditions, the second, constant slip length term
will predominate. For example, a recent SFA study by
Baudry et al., in which a lyophilic ball was oscillated
against a lyophobic flat,'° obtained squeeze results which
were interpreted to obey the constant slip length model
of Vinogradova,?® with a slip length b of 38 nm. However
it is found that the new, combined slip model with b = 38
nm and 7, = 0.3 Pafits the data of Baudry and co-workers
equally well. This is because they employed a high viscosity
liquid (glycerol) and also a quite small radius of curvature
contact. In combination, these two factors meant that a
surface shear stress of 0.3 Pa was reached over most of
the load-bearing region of the contact under all of the
conditions tested, so that the second term in eq 6
overwhelmed the first.

(24) Zhang, X.; Zhu, Y.; Granick, S. Science 2002, 295, 663.
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The influence of a7, termisalso likely to be less evident
in conditions where the shear stress is constant over the
surface, as in capillary and Couette flow, than in geom-
etries where it varies, as in the surface forces apparatus
or atomic force microscope. In the former, a finite value
of 7., will merely offset the plot of strain rate versus slip
velocity, and eq 6 will still yield a constant shear slip
length.

One limitation of the proposed model is that it does not
adequately fit the values of f* measured for high surface
shear stress conditions. For slip at both surfaces, Vino-
gradova’s constant slip length, eq 2, and the combined
criteria slip eq 6 both predict that under the most
preferential slip conditions, the gradient of In(f*) vs In(h,)
should reach a maximum value of unity. Contrary findings®
imply either that slip velocity depends more strongly on
surface shear stress than the normally assumed power of
unity or that some factor in addition to surface shear stress
controls slip. One possibility is that a critical shear stress
controls the onset of slip (according to theory at h = 4h,/3)
and its initial development around this zone but that at
some stage this slip region propagates across the contact
to effectively remove the limiting shear stress condition
at other regions.

Like the constant slip length model, the proposed model
of slip is a purely mathematical one and it is of interest
to consider how it might relate to physical behavior at the
interface. There exist two main physical models of slip of
simple liquids at smooth, lyophobic surfaces. One, due to
Tolstoi, is based on the enhanced mobility of molecules of
liquid immediately adjacent to a nonwetting solid.?®> The
second, more recent suggestion, discussed by Vinogra-
dova®® and recently formalized by de Gennes,?® is the
formation of a nanothickness gas or vapor film of low shear
strength between the liquid and the nonwetting solid
surface. Both of these physical models have been shown
to predict slip behavior that obeys the constant slip length
equation.

So far as the authors are aware, no physical model based
onacritical shear stress has been put forward with respect
to the slip of simple liquids. In polymer flow however,
where the recognition and study of slip is much more
advanced, models incorporating both acritical shear stress
and stress-dependent slip rate, resulting from a combina-
tion of chain debonding and disentanglement, have been
developed.’®20 In these, the onset of slip results from a
sudden viscoelastic instability above a critical strain. Such
a concept might be used to incorporate a critical shear
stress for slip into a model of the Tolstoi type.?® It is also
not difficult to envisage the existence of a critical shear
stress for slip in the gas film slip model. In this model, it
has been conjectured that liquid strain close to the surface
transforms small droplets of gas, which collect preferen-
tially at the nonwetted surface, into an extended, thin
film.26 Such a transformation might well depend on the
strain rate of the neighboring liquid and thus take place
only when a critical shear stress condition is reached.

Conclusions

There is now strong experimental evidence that simple
Newtonian liquids can slip against very smooth solid
surfaces. However there is some debate about the most
appropriate equation to describe this slip, with some work
agreeing quite closely with the classical constant slip
length equation but other results being greatly at variance
with this model.

(25) Blake, T. D. Colloids Surf. 1990, 47, 135.
(26) de Gennes, P.-G. Langmuir 2002, 18, 3213.
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Figure 7. Geometry of ball-on-flat (or crossed-cylinder) contact
showing notation used for calculations.

This paper has shown that some of the apparent
differences in the form of slip behavior observed in different
experiments can be reconciled if slip is envisaged to occur
only when a critical surface shear stress is reached and
that, once slip begins, it then takes place at a constant
slip length. The suggested slip equation is as stated in eq
6 in this paper. In practice, because the critical shear
stress is quite small, its effect will be negligible in
experiments involving high shear stress conditions.
However it will have a strong effect in low shear stress
conditions and be particularly evident in conditions where
the surface shear stress varies over the fluid film being
studied, as is the case in the surface forces apparatus. It
is also expected to have a strong effect in conditions where
surface roughness “pins” the moving fluid up to a critical
level of shear rate!!
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Appendix
The ball-on-flat or crossed-cylinder contact as shown in
Figure 7 iscentrosymmetric, with film thickness at radius
r given to a close approximation by the parabolic form

r2

h=h°+ﬁ

(Al)

where h, is the central film thickness at r = 0 and R the
radius of the sphere in contact with the flat. The contact
is filled to a radius Ry with Newtonian fluid of dynamic
viscosity #. The contact is subjected to a squeeze velocity
of w = —dh/dt due to downward motion of the upper
surface.

The task is to determine the instantaneous normal force
generated in the fluid film as a function of h,, R, Ry, 7, and
w for a liquid film exhibiting slip at one or both surfaces
described in terms of a slip model

(A2)

where 1, is the critical threshold shear stress for slip, b
istheslip length once slip begins, and us is the slip velocity.
(In the predictions shown in this paper, Rf was always
taken to be equal to R; i.e., the whole contact was assumed
filled with fluid. In practice, however, the predicted
pressure and load are quite insensitive to the value of R¢
so long as Rf > R/50.)

(a) No-Slip Condition. From the equilibrium of an
element of fluid

at,/9z = aplar (A3)
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Assuming the fluid rheological model, t = #(3u/dz)

_ 2, ) (A%)

or 82(77 0z

Note that this equation is derived rigorously and the
parabolic approximation justified by Vinogradova.?® This
equation is integrated twice, assuming that the viscosity
does not vary though the thickness of the film in the z
direction, to give

8pz

nu = ar 2+Clz+C (A5)

Applying the no-slip boundary conditions, i.e., u =0 at
z=0and u=0atz=hgives

_19p

=5 o @ —2h) (A6)

The outward flow through an annular element of radius
r can be determined by integrating this velocity through
the thickness of the film and multiplying by 2s7r.

g, = —2ar 190 (A7)

From volume conservation, this flow must equal the
volume of the fluid displaced by squeeze from the circular
region of radius r, i.e.

—27r —’7 == —ar°-—- (A8)

Putting w = —dh/dt (w is positive for downward motion),
the pressure gradient at radius r is

der _ _ epwr
dr h3

(A9)

Thisequation can easily be integrated analytically with
boundary condition p, = 0 at r = Ry to yield first the
pressure p, and then the load support, W.

11
N he
W= em,sz(hi - é) (A1)
0 f

Assuming hg, > h,, this gives the widely used form
W = 6zpwR?/h, (A12)

Before considering analysis with slip, it should be noted
that the shear stress at the two surfaces, 75, can be
determined from the velocity gradient at the surfaces via
the relation 75 = n(du/dz),—o . For the no-slip case, these
velocity gradients can be found by differentiating eq A6
and yield

(o}
©

T, = (A13)

N
2|

By elimination of dp,/dr from eqs A9 and A13, this gives

7, = —3nwr/h? (A14)
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(b) Slip Only Possible at One Surface. There are
two alternative approaches to solving the case when slip
occurs, one using a shear stress boundary condition and
the second using a slip velocity boundary condition. In
this analysis the second approach is used. An example of
the first has been presented elsewhere by one of the
authors.?’

If slip takes place at one surface at slip velocity us, the
integration constants C; and C, in eq A5 can be determined
assuming a fluid film velocity u = 0 at the lower no-slip
surface and u = ug at the upper, slip surface. This yields

10p

u:2n8r

(2 — zh) + Uy (A15)

h

As in the no-slip case, this can be integrated through
the thickness of the film to determine the flow rate through
an annulus at radius r

_, [ hdp ush)
qr—27tr( 127 T (A16)

Equating this with the fluid displaced due to squeeze
as in eq A8 gives

dpr __bywr | 67
ar - he + F (A17)

IneqAl7, usisunknown. Itcan be found by determining
the shear stress at the slipping surface using 7 = n(du/
dz),-n and obtaining (du/dz),-, by differentiating eq A15.
This gives

_ , hd ugn
rs—+2dr+ h (A18)
However when slip takes place, ts = —1., where 7. is

defined by the slip model A2, i.e.

hd Us77
S —(rw +1 us) (AL9)
(The negative sign is used to allow for the fact that shear
stress on the fluid at the wall is actually negative; i.e., it
restrains radial outward flow, and this was not taken
account of in the slip model eq A2 where 7, and b are
assumed to have positive values.)
Combining egs A17 and A19 to eliminate us gives

dpr_ _ eywr (h+b) 6b
dr h® (h+4b) h(h+ 4b)

7, (A20)

For the case of 7., = 0 so that slip occurs over the whole
contact, this can be integrated to give Vinogradova's load
support expression for slip at one surface.?® For finite 7.,
however, slip occurs only when the shear stress at the
appropriate surface reaches this critical value. From eq
Al4, slip takes place when

3npwr/h? > 7, (A21)

In practice the pressure gradient and thus the shear
stress are low both in the very center of the contact and
at large radial distances and have a maximum at h =
4h,/3 for the no-slip case. This means that with a limiting
shear stress for slip criterion, slip will occur within an
annular region close to and around the contact center.

(27) Spikes, H. A. Proc. Inst. Mech. Eng., Part J 2003, 217, 1.



Equation for Slip of Simple Liquids

The solution for pressure thus involves the determi-
nation of whether slip will occur at each radial position
and local integration of either the no-slip, eq A9, or the
slip, eq A20, as appropriate. This is not possible analyti-
cally but is very straightforward numerically by integrat-
ing inward from the edge of the contact, where pg, = 0.

An alternative arrangement of eq A20 is

dp, — epwr 6b | 3pwr
dr = p® T n(h+4b)\ fw‘k‘ﬁ?ﬂ (A22)

which shows how the critical shear stress always serves
to reduce the negative pressure gradient and thus the
load support. From eq A21, slip only occurs if the term in
the innermost brackets is greater than zero. This leads
to asuccinct form of the pressure gradient for the contact,
allowing for both no-slip and slip

(672;”_ h(h6f4b)\ K +37t71wr))) (A23)

dp, — _min([Bmvr
dr 3

(c) Slip Equally Possible at Both Surfaces. The
approach is very similar to the case of slip at one wall. The
integration constants in eq A5 are determined using the
boundary conditionsu =usatz=0andu=usatz=h
(the two surfaces are assumed identical so that us must
be the same for both). This gives

_19p

2 or (z zh) + ug (A24)

Integrating through the film to find ¢, and equating
this to the fluid displaced by squeeze gives

% _ _ Gypwr n 1277
dr h3 h2 S

(A25)

Following a similar determination of 7. to that for the
one surface slip case to eliminate us eventually yields

d
o _ _ 6ywr + 12b I_Tco " 3pwr
dr h®  h(h+ 6b)\ h?

) (A26)

or, allowing for slip and no-slip over the contact

%=—min 6ywr
dr h /)

6nwr 12b 3pwr
"~ e e ) @2

Again, for the case of 7., = 0, so that slip occurs over the
whole contact, this can be integrated to give Vinogradova’'s
load support expression for slip at two surfaces (eq 2). For
b > h the equation tends to eq 4 for critical shear stress
for slip.

The procedure for obtaining a solution for pressure and
consequent load support from eq A27 is the same as for
the slip at one wall case described above.

(d) Slip Possible with Different Facility at Both
Surfaces. In this case, when slip occurs at both surfaces
the velocity profile is given by

1 dp

=5 o @ =2 + (g —ug)

+ug, (A28)
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where us, and ug; are the slip velocities at the lower and
upper surfaces.

As in the previous cases, this can be differentiated to
obtain the shear stress at each surface, which is then
equated with the shear stress for slip of the new model,
to give, for the lower and upper surfaces, respectively

_(Tcol + bilusl) (A29a)

L h (u n
E d_p % = _(7:002 + bEZUSZ) (Ang)

where 7¢01, by and .02, b, are the critical shear stress for
slip and the slip length at either surface.

The velocity, eq A28, can also be integrated to obtain
the flow rate, which can be equated with the flow due to
squeeze displacement to give

_,|_h°dp
Gr = 2’”( 12pdr 2

Equations A29 and A30 both relate slip velocity to
pressure gradient and can be solved simultaneously to
give the pressure gradient shown in the fourth expression
in eq A31 below. This overall equation represents the
pressure gradient at any radial location, taking into
account the possibility of no slip and slip at either or both
walls. The fourth expression is symmetrical with respect
to the two surfaces, in that it yields the same solution
regardless of which surface is designated 1 or 2. Also, as
reqmred when by = b, and 71 = 702, it reduces to eq A26,
i.e., to the slip equally possible at both surfaces case.

Ug, + ug)h
M+ U )=m2w (A30)

dp, _
dr
| (6npwr\ [65wr 6b, 3npwr
— — —Ton +
m ( h® ) ( he h(h+4b)| " 2 )
6pwr  6by /__[ 4 3pwr
h®  h(h+4b)\ 2 Rz )/
6ywr @ (1 + A)(—7eihln + B)
h®  h?\ (1—A)+hiby)
R (A31)
(@ —A) + h/by)
where
2.1
. 5 o)
T2 1
h b,
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B (Tcoz Tcol)
2,1
5+

LA034123J



