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Methods are discussed to track single molecules in planar-supported phospholipid bilayers. Mainly, these methods
constitute optimizations for a low signal-to-noise ratio and for the dim optical characteristics of single molecules.
Algorithmic modifications to compensate and correct for misidentifications and misassignments are also described.
One key advance, which exchanges the typically fragmented reconstruction of the molecules’ motion for more complete
trajectories, is the incorporation of information about the molecules’ past and future positions into the tracking.
Although the main point of these methods is to aid in extending methods of object tracking to the single-molecule
regime, they may also find use in other situations where the signal-to-noise ratio is low.

I. Introduction

Tracking the motion of colloidal-sized objects through the use
of video microscopy has evolved into a standard technique
commonly applied to study colloidal suspensions and other objects
whose fluorescence signal is bright because they contain multiple
dyes.1-3 To this end, software is freely available.4 Recently, the
rapid development of bioscience, especially cellular processes
such as signaling, docking, and enzymatic dynamics, has made
desirable analogous measurements concerning molecules labeled
with a single fluorescent dye. Thanks to the advent of improved
detection systems, the observation of single molecules is now
possible, to the point that fluorescence microscopy can monitor
the stochastic trajectories of single molecules in real time. For
example, lipid molecules labeled with a single dye moiety are
monitored to study membrane fluidity.5-7 Single-dye-labeled
proteins are used to study cellular signaling and synapse
formation.8,9 The chemical dynamics of some enzymes is
investigated at the single-molecule level by monitoring fluo-
rescence from their active sites.10-12

In response to this need, various methods are now standard
for tracking single particles; for example, cross correlation, sum-
absolute difference, centroid identification, and direct Gaussian
fit, as reviewed by Cheezum et al.13Comparing these algorithms,
the conclusion was reached that a direct Gaussian fit to the
intensity distribution is the superior algorithm for tracking point
sources, whose signal-to noise ratio is much less than for large

particles.13However, these methods run into difficulty as concerns
the case of single-molecule fluorophores (signal-to-noise ratio
around 4), the situation that we will discuss in this article. In the
case of single-molecule fluorophores, it is still problematical to
discriminate relatively dim features from the upper end of noise.
Inadequate choices may cause misidentification and misassign-
ment.

Important attempts toward improving the signal-to-noise ratio
of single fluorescent probes and improving the localization
precision of their features were made previously. On the
experimental side, using brighter fluorophores and increasing
the data acquisition time of each frame to increase the fluorescence
signal intensity or using proper optical filters to block the
background noise of fluorescence from immersion oil and other
extraneous sources will improve the situation. On the theoretical
side, it is clear that precision localization inversely depends on
the number of photons in a diffraction-limited spot in which
background noise dominates the sources of noise.14

In this article, we describe algorithmic methods developed for
tracking single fluorescent probes, methods apart from the
advantages that are obtainable from having superior instrumen-
tation. As will be explained below, these techniques peculiar to
the study of single-molecule trajectories are used to flatten images,
to identify features, to pair molecules, and to analyze the final
stochastic trajectory of each single molecule.

To illustrate the implementation of these methods, the
experimental portion of this article shows findings when these
tracking algorithms were used to study the lateral diffusion of
fluorescent-tagged lipids within supported phospholipid bilayers
and compares the imputed translational diffusion coefficient of
lipid to that deduced by other techniquessfluorescence correlation
spectroscopy (FCS) and fluorescence recovery after photo-
bleaching (FRAP).

This study was based on extensive modifications of the freely
available software designed for tracking colloid-sized partices.4

Because the general subject is how to deal with systems that
present inherently low signal-to-noise ratios, it is hoped that
these methods may be useful not only for tracking single molecules
but also to the broader particle-tracking community when dealing
with less than optimal experimental conditions.
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II. Instrumentation and Output

To demonstrate these single-molecule tracking methods and
algorithms, the translational diffusion of lipids in solid-supported
phospholipid bilayers was studied experimentally. The phospholipid
DLPC, 1,2-dilauroyl-sn-glycero-3-phosphocholine, was selected
because its gel-to-fluid phase transition of-1 °C was well below
the experimental temperature, 23°C. Into this, we doped at 0.01
ppm molar concentration DMPE, 1,2-dimyristoyl-sn-glycero-3-
phosphoethanolamine, with polar headgroups labeled with rhodamine
B. Both lipids were obtained from Avanti Polar Lipids, Inc. (Alabaster,
AL) and were used without further purification. Using known
protocols based on the fusion of single unilamellar vesicles,15

supported bilayers of the mixture were prepared on hydrophilic quartz
and then rinsed with copious amounts of PBS buffer (10 mM, pH
6.0) to remove unfused vesicles.

These experiments were carried out using a home-built single-
molecule imaging apparatus consisting of a Zeiss Axiovert 200
microscope equipped with a water immersion objective lens (Zeiss
Axiovert 135TV, 63× , NA ) 1.2). The light from a diode-pumped
Nd:YAG laser (CrystaLaser) was directed into the sample in an
attenuated total reflection (ATR) geometry.16 Fluorescence excited
by the evanescent light was collected through the objective and
detected by a back-illuminated electron-multiplying charge-coupled
device (CCD) camera (Andor iXon DV-887 BI). The total system
magnification of the CCD was 250 nm/pixel. Fluorescence images
were collected at different rates but typically at a speed of 30 frames/
s, and 200 frames were collected continuously. The video images
were converted into digital format and analyzed using programs
written in Matlab.

III. Methods

The process of particle tracking can be subdivided into four
major steps: analyzing and processing the images, determining
the location of the molecules within the images, pairing
corresponding features between images, and analyzing the
stochastic trajectories of single molecules.

i. Flattening Images.Despite the use of high-quality optics
and a CCD camera with good quantum efficiency and low noise
characteristics, the images are not ideal. In addition to randomly
distributed noise that cannot easily be removed from the image,
modulation of the background intensity and isolated bright pixels
are also inevitably present. Compensation for these distortions,
before any effort is made to localize molecules within the image,
simplifies the computational work needed to distinguish features
from noise and also reduces the number of spurious features
found. The most noticeable example of such distortion is long-
range spatial modulation of the background brightness, which
is primarily due to nonuniform laser illumination of the sample
area.

Traditionally, boxcar filtration has been used to deal with
inhomogeneity of this kind: in this procedure, one subtracts the
average of the values present in a square region around a given
pixel from the intensity of the pixel itself.4 Although this
effectively removes variation, there is an inherent tradeoff between
suppressing the spatial variation effectively and avoiding the
introduction of processing artifacts.

One common artifact introduced by this filtration is a bright
border around the edge of the image (Figure 1). This occurs
because near the edge the boxcar extends beyond the edge of the
image; therefore, when the average of all of the points within
the boxcar is taken, the value is less than elsewhere because the
fraction of the boxcar that extends beyond the edge of the image

provides a weighting of zero. As a result, the quantity that is
subtracted gradually decreases upon approaching the edge of the
image, leaving a sloping raised border. Often, this region of the
image is simply discarded. Alternatively, our implementation
eliminates this problem by considering the number of pixels
contained within the boxcar compared to the area of the boxcar
and dividing by this factor. This causes the filter to subtract the
average of the pixels present instead of the average of the entire
boxcar region including missing pixels. As a result, although the
value to be subtracted near the edge is the average of fewer
pixels and hence is more variable and less precise, it does not
decrease as the edge is approached, so it no longer creates a
raised border around the image.

A more significant distortion introduced by the boxcar filter
is localized around bright pixels or regions such as those
corresponding to the molecules that one seeks to identify. This
occurs because if localized regions are brighter than the average,
then when the boxcar average contains that region, the value to
be subtracted will incorrectly be larger than average. Conse-
quently, each bright pixel leaves a square depression in the filtered
image, the area of the depression equal to the area of the boxcar
and the depth of the depression inversely proportional to the area
of the boxcar. Each pixel of a bright region leaves its own
depression as well, which will also appear to be roughly square,
as long as the region is small compared to the size of the boxcar.

Because this depression becomes more pronounced the smaller
the size of the boxcar, one may think that the simplest way to
reduce the significance of this distortion is to increase the boxcar
size. However, as the size of the boxcar increases, there is an
accompanying increase in the length scale of the spatial
inhomogeneity that can be suppressed by this method. Although
the optimal balance between these opposing considerations
depends on the nature of the spatial inhomogeneity, a boxcar
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Figure 1. Comparison of various image-filtering methods, illustrated
for dye-labeled lipids within DLPC-supported phospholipid bilayers
as described in the text. Each image shows the bottom left corner
of the same frame of the movie with an acquisition time of 30 ms.
(a) The unfiltered image, showing a background gradient. (b)
Traditional filtering using a Gaussian filter for the suppression of
short-range noise and a boxcar filter for long-range noise.4 (c) Boxcar
filtering only. (d) Current filtering method: modified boxcar filtering
with edge compensation and depression avoidance.
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with each dimension roughly eight times the size of the diffraction-
limited image of the single molecule was found to work best for
our setup.

Even at this point, depressions were found to persist around
all bright regions, especially around the extremely bright pixels
occasionally caused by cosmic rays. A definitive solution to this
problem consisted of setting a threshold criterion. When
determining the mean value of the pixels within the boxcar,
pixels above a threshold several standard deviations above the
mean of the image were not used; in this situation, the threshold
value was substituted instead. The difference between this value
and the background was insufficient to create a noticeable
artifactual depression.

ii. Locating Molecules. Before identifying a molecule in a
digital image, it is necessary to decide on the parameters that
distinguish a molecule from (unavoidable) background noise.
Four criteria are useful to consider in making this evaluation:
peak intensity, total intensity, radius of gyration, and eccentricity.
The first two criteria, peak and total intensity, are the most
important.

To avoid biasing the results with an arbitrary choice, it was
convenient to determine threshold values automatically as follows,
on an image-by-image basis. Figure 2 shows that when plotting
the distribution of intensities of pixels in each image, an
approximately Gaussian distribution was observed. This stemmed
mainly from the noise distribution of the CCD camera. However,
its asymmetry stemmed from the desired signal from the
molecules. How should with this situation be handled? First, the
profile of the CCD noise was determined by fitting the histogram
to a Gaussian distribution. Having determined in this way the
noise profile, it was possible to determine the probability that
a pixel had a true intensity larger than could be attributed to CCD
noise. The peak intensity threshold depicted in Figure 2 was then
selected such that the probability was low that more than one
pixel in the entire image possessed this intensity solely because
of statistical noise. In the analysis of images, preliminary screening
of each pixel consisted of determining whether the pixel was
brighter than the minimum peak intensity calculated above,
signifying that it was too bright to be CCD noise.

However, owing to diffraction, the Airy spot produced by a
fluorescent molecule spans several pixels. With this in mind, we
next set a criterion dictating that a region (adjoining pixels) of
the image must possess a total intensity larger than a given
threshold. Because calculating this probabilistically is more
difficult than for the single-pixel criterion described in the previous
paragraph, generally it was not feasible to calculate explicitly.
We set a criterion for the total intensity by using judgment, with
the intention of reducing the chance that an erroneous feature
sneaks past the first criterion.

It was necessary not only to determine which regions of the
image were brighter than the noise but also to localize their
center. For this purpose, a corollary image was constructed whose
local maxima represent the best matches for fluorescent signals
in a given region of the image. This was accomplished relatively
easily by convoluting the original, filtered image with a
convolution kernel roughly approximating the expected shape
of the feature being sought. Applied to the problem of locating
a fluorescent dye, a Gaussian convolution kernel was employed
as an appropriate approximation of the pixilated form of the
expected Airy spot. Having localized the center of the molecule
to within one pixel, the entire feature was considered. The size
of the expected Airy spot was easily calculated. This region was
examined. Its total brightness, radius of gyration, and eccentricity
were determined.

The total brightness was used as a secondary screening criterion
to prevent noise being falsely classified as a molecule. At present,
we make little use of the final two criteria (radius of gyration
and eccentricity) but include them for completeness.

As part of this procedure, features where the majority of the
intensity comes from a single pixel are removed because these
cannot correspond to molecules when one considers that the
diffraction-limited spot size of a molecule ensures that it occupies
several pixels. Finally, the location of the particle is further refined
using a brightness-weighted centroid. Because the use of Gaussian
convolution has already localized the center to within one pixel,
iterated centroid determination was not employed. The signal-
to-noise ratio heavily affects the accuracy of this calculation, as
discussed in a related context by Cheezum et al.13 Depending
upon the system studied, the noise level may be too high, in
which case accuracy is limited to the nearest pixel.

iii. Matching Features. What should be done when the paths
of two molecules cross? Determining which features in images
taken close together in time correspond to the same molecule is
a significant challenge that presents inherent limitations regarding
what kind of trajectories can be tracked. Although the exact
implementation that we used differs from the reference that
follows, an explanation of how to link locations into trajectories
is covered well in a paper by Crocker and Grier.4 Reasoning
from the necessary condition that trajectories rarely intersect
within a single time step, it is possible to reduce this problem
to many smaller subnetworks, most of them with a unique solution.
For the remaining subnetworks, a Gaussian probability distribu-
tion is assumed for the diffusion of the particles, and the most
probable solution is chosen. This biases the solution toward
minimizing the motion of the particles. Although usually accurate,
in rare cases it will result in a misassignment.

At first glance, the assumption of a specific value for the
Gaussian distribution of the particle motion may appear
problematical when the objective is to determine the presence
of Brownian motion and the diffusion constant. However, from
repeated simulations with a wide range of both diffusion

Figure 2. For dye-labeled lipids within the DLPC system described
in the text, this histogram shows the number of pixels within a
typical image that have a particular intensity. The blue line indicates
the Gaussian fit to the histogram. The star indicates the calculated
peak intensity threshold used to determine which local maxima in
the image might be due to fluorescent molecules. On the basis of
the Gaussian fit, random noise is unlikely to produce a pixel of this
intensity more than once in this image. The triangle indicates the
total intensity threshold. On the basis of the Gaussian fit, detector
(CCD) noise is unlikely to produce spatial regions, the size of a
typical diffraction-limited fluorescence spot, that possess this average
intensity.
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coefficients and distribution types, we concluded that this is a
weak assumption with almost negligible impact on the final
conclusion.

Relative to traditional prior practice in this field1-3 is the
following: a significant modification was made to implementing
the connection between brightness and feature identity. Tradi-
tionally, brightness was scaled appropriately and treated as an
additional physical dimension. Although appropriate to 3-D
tracking where the brightness is an indicator ofz-axis height, this
is less useful for tracking single molecules in two dimensions.
Instead, the reasons that identical single molecules on a flat
surface might differ in fluorescence intensity must be considered.
One reason could be different alignment of the transition dipoles.
Another consideration is that for many fluorescent dyes the rate
of fluorescence is not constant, the molecule switching instead
(“blinking”) between various emissive and nonemissive modes.17

The 30 ms time resolution of our data acquisition apparatus is
shorter than the lifetime of some of these modes, resulting in
variations in molecule intensity between different modes.
Therefore, a partial correlation existed between the intensity of
a single molecule in one frame and the next.

Before analyzing brightness data in this context, it was corrected
for the intensity of the background, as described above. This
criterion was used not only as a weak distinguishing characteristic
between molecules but also to suppress noise further. By
considering the relative brightness when evaluating possible
matches, the partial correlation of a particle’s brightness between
frames improves the tracking. This frequently allowed the correct
trajectory to be determined when two otherwise indistinguishable
molecules move past each other. When implementing this in a
computer program, the weighting of the ratio of brightness was
made to be an adjustable parameter to allow for varying degrees
of correlation depending upon the relevant experimental pa-
rameters.

The absolute brightness of each feature was also considered;
this both further suppressed noise and further improved trajectory
assignments. Although weakly emissive and nonemissive fluo-
rescent states are not uncommon, going from being one of the
brightest molecules in one image to zero emission in the next
would require an improbable transition between states at exactly
the wrong moment. It is reasonable to conclude that the probability
of observing the brightest features of an image also in the next
temporal image is greater than the probability of not observing
them. Similarly, the probability is low that one of the brightest
features is in fact noise. These differences were incorporated
into the matching probability discussed earlier, again with an
adjustable coefficient to vary the weighting depending upon the
strength of the correlation.

One consequence of the frequency with which single fluo-
rescent molecules blink is that their overall trajectories are
fragmented into shorter visible segments. To overcome this, the
algorithm was modified to allow the reconstruction of trajectories
even in the presence of an intervening hole, as illustrated in
Figure 3. The main idea is to supplement the trajectory information
determined from the actual time sequence of images with
trajectory information from the same movie downsampled to
half the time resolution.

Specifically, after tracking all adjacent frames of the movie,
alternating frames of the movie were tracked similarly; this gave
two additional sets of trajectoriessone containing the odd frames
and the other containing the even frames. When a sequence in
the ordinary tracking terminated, the additional trajectories were

consulted. Frequently, these trajectories connected to another
trajectory from the ordinary tracking, in which case the possibility
that the two trajectories from the sequential tracking represented
the same molecule was considered. When attempting to join two
sequences together, two points of overlap on either side of the
break to be bridged are required.

In this analysis, the terminating steps of any trajectory were
less reliable than the middle steps. The inability to continue
tracking was a good indicator that some kind of an abnormality
was present, either a misidentification or a vanished molecule.
Therefore, if the trajectories were joined and there was a point
in dispute, then the dispute was resolved in favor of the trajectory
that contained the point in the middle. This represents a significant
improvement over the practice of retaining the location of lost
trajectories and attempting to find a match for them at a later
point in time. By using multiple points of overlap, mismatches
were minimized, and accuracy was maintained because (as already
mentioned) the alternating frame tracking is equivalent to the
regular tracking of a movie with half the time resolution. As a
result, the only drawback is that this cut the effective time
resolution in half for the purposes of determining which movies
could be successfully tracked. Generally, this was not an issue.

(17) Göhde, W.; Fischer, U. C.; Fuchs, H.; Tittel, J.; Basche´, Th.; Bräuchle,
Ch.; Herrmann, A.; Mu¨llen, K. J. Phys. Chem. A1998, 102, 9109.

Figure 3. (a) Although a molecule may move sequentially from
point 1 to point 7, reconstructing that motion from a movie can be
complicated. Complications can include failure to detect the molecule
in a particular frame, the trajectories of two molecules crossing each
other, or interference from noise, as simulated here. Traditional
tracking would find two segments, one following the molecule from
point 1 to point 4 (black) and a second following the molecule from
point 4′ (mistakenly) to point 7 (brown). This can easily occur if the
noise present at 4′ provides a better match with point 5 than the real
molecule at point 4 does. Tracking alternating frames, as described
in the text, results in the trajectories containing the odd points (blue)
and the even points (pink). (b) These trajectories connect the two
single trajectories sufficiently to allow reconstruction of the proper
time sequence.
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Although the main advantage of this procedure was to extend
the length of the time sequences that could be tracked successfully,

it was also useful in error correction and in dealing with the
inaccuracy introduced by having edges to the image.

Discrepancies occurred occasionally. The single frame and
one of the alternating frame sequences agreed about earlier and
later points but disagreed about the middle point in a sequence.
Upon examination, often the point from the alternating frame
sequence was found to be more probable because it minimized
the motion of the particle. Therefore, it was substituted back in.
Additionally, it is self-evident that tracking accuracy is inherently
poorer near the edge of an image because observing molecules
that diffuse into or out of this image is technically impossible.
Therefore, we find it convenient to evaluate all molecules within
one diffusion step of the image edge. If the preceding and
following points were tracked successfully using alternating step
tracking and lay far enough from the edge of the image, then
(bearing in mind that the presence of the edge did not influence
the trajectory) these trajectories were maintained. If not, then the
trajectory was fragmented into two segments.

Although this would occasionally split legitimate trajectories,
it eliminated the artifactual difference in accuracy between
trajectories that were near the edge of an image and those that
are not. In turn this made it easier to determine the fundamental
characteristics of the motion and to improve the tracking accuracy.

iv. Analyzing Trajectories. At this point, the trajectories of
the molecules were known, but the list of trajectories included
trajectories or segments caused artifactually by noise, in addition
to the true trajectories. To eliminate these, the first step was
recognition that seeming trajectories owing to random noise
generally contained fewer segments than true trajectories that

Figure 4. For dye-labeled lipids within the DLPC system described
in the text, panel a shows trajectories at least five frames long found
using algorithms described in the text. Among these, the trajectories
in blue (up to 30 frames in length) are examples of trajectories that
exhibited no motion beyond that which could be attributed to
uncertainty in locating the particles and therefore were discarded.
The green lines illustrate trajectories used to determine the computed
diffusion constant, but it was not very simple. Although most of
these trajectories appeared to exhibit random walk behavior, some
were similar to the trajectories in blue in the sense that they were
stuck to a fixed position or else they were stuck to a few fixed
positions, occasionally jumping between them. Experience showed
that although these would have profoundly reduced the inferred
mean squared displacement if included in the final data analysis,
when the distribution of displacements was plotted, their motion
was distinctly separate from the real motion. (b) The same data
analyzed using a standard particle-tracking algorithm.4 The trajec-
tories in panel a are partially reproduced, but close examination
reveals that the equivalent trajectories were frequently either shorter
than in panel a or else were composed of multiple fragments and
also that they exhibited a greater uncertainty in position. Most
important in panel b is the appearance of a large number of new
trajectories in which the standard particle-tracking routine mistakes
noise for signal (i.e., actual molecules). The main point of panel b
is to show that the real single-molecule trajectories were overwhelmed
by trajectories that in fact reflected noise in the data, thus confounding
the determination of the real translational diffusion coefficient.

Figure 5. For dye-labeled lipids within the DLPC system described
in the text, the mean squared displacement is plotted vs time for all
trajectories at least 15 segments long. (Lower curve) Linearity shows
Brownian motion. A vertical offset, 0.62µm2, attributable to the
random error in locating the particles, was subtracted. The number
of trajectories contributing to this calculation was 35 for the first 15
data points and decreased for longer times. The diffusion constant
calculated from the slope of this plot is artificially low. Figure 6
explains why: both the mobile and immobile populations were mixed
together indiscriminately. Using an alternative method described in
the text, for one of the longest trajectories that we succeeded in
tracking (76 successive frames, 100 ms per frame), the mean squared
displacement was plotted against elapsed time. (Upper curve) A
vertical offset, 0.20µm2, attributable to the random error in locating
the particles, was subtracted. Note that because frames in this
trajectory were better localized and brighter than for the average
trajectory the random error in determining the particle position was
less for this plot. One observes linearity for the first 3 s. A reasonable
fit (shown) impliesD ) 3.2µm2/s, which agrees well with the FCS
finding thatD ) 2.6 µm2/s.19

5270 Langmuir, Vol. 22, No. 12, 2006 Anthony et al.



followed true molecules. This was easily understood when one
considered that if the trajectory was true and the dye did not
blink then there should be a feature to match up to in the next
frame. For noise, it is not so. Therefore, the majority of these
artifactual, seeming trajectories could be excluded simply by
discarding the shortest trajectories.

Testing this idea, one finds that the statistical result depends
strongly on the trajectory length. Removing the very shortest
time trajectories from consideration significantly suppressed the
number of inferred long spatial trajectories, but no significant
further change was found when medium-length trajectories were
discarded. The residual differences were obvious by considering
the enhanced chance of a match owing to artifactual noise when
the displacement amplitude is high. In our implementation of
this idea, all trajectories of fewer than 10 time segments were
discarded. This arbitrary value produced a stable histogram of
findings.

Noise might be manifested as seemingly complete trajectories
and might also degrade accuracy in determining the true
trajectories of the tracked molecules. For the reasons already
discussed, the ends of trajectories are the least accurate. Therefore,
after the trajectories were otherwise finalized, the first and last
segments of each trajectory were discarded. Although this reduced
somewhat the number of largest-displacement segments, because
further reduction was not observed when this algorithm was
repeated this was a strong indication that this was due to a
reduction of noise. Because the beginnings and ends of trajectories
were distributed evenly through all the frames of a time sequence
and other segments of the trajectory should not depend on the
discarded segments, discarding those segments should not
introduce bias.

At this point, the motion of the molecules was recorded. It was
used in a variety of ways depending upon the purpose of the
experiment. Frequently, the mean squared displacement of the

system was of interest, and the diffusion constant was determined
from the slope of the relevant plot. For a system exhibiting a
random error in determining the position of the molecules, the
equation of the plot for Brownian motion in two dimensions is18

and a linear dependence of the mean squared displacement (MSD)
on time elapsed (∆t) indicates Brownian diffusion. Here,D is
the translational diffusion coefficient, andσ2 is the variance of
the experimental noise.

This analysis is insensitive to the possible presence of
subpopulations whoseD differs from the majority component.
Rather than plot the mean squared displacement according to eq
1, the distribution of motion in single steps can be plotted. This
method of analysis is insensitive to the correlation of motion
between time steps but readily reveals the presence of multiple
diffusion rates or mechanisms. Therefore, these two methods of
analysis are complementary.

(18) Dietrich, C.; Yang, B.; Fujiwara, T.; Kusumi, A.; Jacobson, K.Biophys.
J. 2002, 82, 27.

Figure 6. Histogram of the translational displacement of the
molecules for a four-frame interval. Attempts to fit this histogram
with a single Gaussian (blue) and two Gaussians (green) reveal the
presence of two subpopulations. (The red line shows just the wide
component of the two-Gaussian fit.) The width of the narrow Gaussian
is approximately equal to the uncertainty in position. The width of
the wider Gaussian, when adjusted for the time interval, corresponds
to a diffusion rate ofD ) 2.5 µm2/s using these parameters. By
varying computational parameters, as shown in Figure 7, the Fickian
diffusion coefficient was determined to beD ) 2.6 ( 0.4 µm2/s.
This agrees with the diffusion constant of the mobile molecules
determined by fluorescence correlation spectroscopy, FCS (2.6µm2/
s).19 (Inset) A heuristic histogram showing that 65% of the statistics
summarized here reflected unphysically small steps attributable to
various artifacts and that the physically meaningful (larger)
displacements comprised only 35% of the statistical sample.

Figure 7. Comparison of the translational diffusion constant
determined using algorithms described in this article (blue) and
algorithms in the literature4 (red) while varying two computational
parameters: the threshold length below which trajectories were
discarded (x axis) and the number of successive frames used to
compute the translational displacement trajectories. Each data point
represents the mean value for frame intervals from three to six frames,
and the error bars represent the standard deviation. This range was
found to be the optimal range for these data based upon the quality
of the fitting. When we sought to fit shorter intervals, the combination
of noise and smaller difference between components in the two-
Gaussian fit complicated matters to the point that unequivocal fits
could not be obtained. However, though longer trajectories would
in principle be desirable, too few longer trajectories could be acquired
to generate reliable statistics. In this plot, one notices that the choice
of minimum trajectory length was not critical for the algorithms
described in this article, which agreed well with the FCS value
(green line) regardless of how this parameter was chosen. However,
the application of literature algorithms4 to this situation of low signal-
to-noise ratio gave problematical results. When the shortest
trajectories were included, the distribution of displacements was
dominated by random noise, yielding an erroneously large computed
diffusion coefficient. When only the longer trajectories were included,
standard algorithms4 did not succeed in following enough of them,
resulting in so few long trajectories that the statistics of their analysis
was not robust.

MSD(∆t) ) 4D∆t + 2σ2 (1)
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IV. Data and Results

To test the efficacy of these algorithms and to illustrate their
operation in practice, they were applied to analyze images taken
for supported phospholipid bilayers of DLPC containing fluo-
rescent-labeled lipids as described above. This research group
had already studied this same system using fluorescence
correlation spectroscopy (FCS).19

First, we analyzed a single (relatively long) trajectory (7.6 s
long, 100 ms per frame). Because the analysis of a single random
walk trajectory is not standard, it is appropriate to explain the
method. The main idea is to consider the trajectory to be an
assembly of steps: 76 segments (in this case) composed of 1 unit
step length, 75 segments composed of 2 step lengths, 74 segments
composed of 3 step lengths, and so on. Each step length
corresponds to the time interval of a single data acquisition frame
(100 ms in this example). In the top curve of Figure 5, the mean-
squared displacement is plotted against elapsed time. One sees
that the data are linear for the initial 2 s (i.e., before the statistics
became too few to be reliable because the number of segments
with >20 step lengths was too few to be reliable). The slope
corresponds toD ) 3.2µm2/s, which agrees well with the FCS
finding thatD ) 2.6 µm2/s.19

However, a blind implementation of single-molecule tracking
proved to be misleading. Considering all data collectively, the
mean squared displacement is plotted against time in the bottom
curve of Figure 5. Upon first observing this, we were shocked
that the slope implied a diffusion coefficient a factor of 5 less
than that deduced from the top curve of Figure 5 and the FCS
data.19 Why? The explanation emerged from considering a
histogram of the displacement steps, plotted in Figure 6. Here
one observes two distinct subpopulations. One subpopulation
consisted of relatively large displacements; another consisted of
miniscule displacement from the original position, not larger
than the statistical uncertainty. However, because of some
trajectories having sections from each subpopulation, a separation
of trajectories based upon the subpopulation was not feasible.
The second subpopulation probably stems in part from fluorescent
dyes that were nearly immobilized by the surface, in part from

surface defects and finally in part from fixed noise sources
(scattering points, fluorescence impurities in the substrate, and
defects in the optics or the detector). We tested this interpretation
extensively. Detailed analysis (not shown) revealed that displaying
displacement over a single-frame interval, instead of the four-
frame interval plotted in Figure 6, approximately halved the
width of the wider Gaussian, just as should be expected if the
width corresponded to Brownian diffusion. At the same time, it
did not change the narrow center subpopulation, just as expected
if this subpopulation were artifactual for the reasons just discussed.

This illustrates a distinct advantage of single-molecule
tracking: thecapacity todistinguishdistinct subpopulationswhose
mobilities differ. In implementing this technique, one must be
fully aware of the disproportionately large contribution taken by
trajectories that are exceptionally bright and for this reason
contribute exceptionally strongly to the raw statistics, but for the
trivial reason that they are nearly stationary. This near-static
population should be ignored and was ignored for our deter-
mination of the diffusion constant.

Varying the computational parameters used for analysis
highlighted the need to modify the standard particle-tracking
algorithms4 before working with systems that possess lower
signal-to-noise ratios. As seen in Figure 7, our algorithms
uniformly gave results in close agreement with the FCS finding
of D ) 2.6µm2/s19 for a wide range of parameters. The overall
result obtained using our algorithms wasD ) 2.6( 0.4µm2/s.

V. Summary
Modifications to standard particle-tracking methods4 allow

their extension to the lower signal-to-noise regime that holds
when one seeks to track the trajectories of single molecules.
Although some of the optimizations proposed above are based
upon the unique properties of single-molecule fluorescence, most
dwell on reducing the impact of noise upon the final set of
trajectories and thus may also be relevant more broadly.
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