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Computer simulations of a polymer chain of length N strongly adsorbed at the solid-liquid interface in
the presence of explicit solvent are used to delineate the factors affecting the N dependence of the polymer
lateral diffusion coefficient, Dk. We find that surface roughness has a large influence, and Dk scales as
Dk � N

�x, with x � 3=4 and x � 1 for ideal smooth and corrugated surfaces, respectively. The first result
is consistent with the hydrodynamics of a ‘‘particle’’ of radius of gyration RG � N� (� � 0:75) translating
parallel to a planar interface, while the second implies that the friction of the adsorbed chains dominates.
These results are discussed in the context of recent measurements.
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While there is good understanding of polymer diffusion
in unconfined solutions and melts [1,2], the same is not so
for polymer dynamics at surfaces [3]. Historically, studies
of unconfined diffusion began with the conceptually simple
problem of an isolated chain dissolved in a sea of solvent
[1,2]. In this case, hydrodynamic interactions have the
effect of modifying the chain length N dependence of the
translational diffusion coefficient D of the Rouse model
(D� N�1), which neglects hydrodynamic interactions, to
D� N�1=2 for ideal random walk chains. We proceed
similarly and consider an isolated chain strongly adsorbed
on a surface: the chain assumes a ‘‘pancake’’ conformation
in which its size normal to the surface is of the order of a
monomer size and independent of N. While the diffusion
coefficient parallel to the surface scales as Dk � N�1 for
DNA diffusing on phospholipid bilayers [4,5], experimen-
tal results on hard surfaces have found Dk � N�3=2 [6,7].
While the lipid results are consistent with Rouse dynamics
it is unclear why hydrodynamics appear to be unimportant.
Similarly, the results for the solid surfaces remain unex-
plained. Reasoning by analogy with what is known about
unconfined polymer diffusion [8], previous workers [6]
have suggested that including hydrodynamic interactions
might allow us to rationalize these results. Prior simula-
tions of surface polymer diffusion (which did not include
solvent) yielded Dk � N�1 [9–12]. Our simulations in-
clude solvent molecules so as to critically study the role
of hydrodynamics. Surprisingly, we find for the special
case of analytically smooth surfaces that Dk � N�3=4.
Surfaces with uniform friction, on the other hand, show
Dk � N�1 even with explicit solvent. Our simulations then
do not explain the Dk � N�3=2 result found on hard sur-
faces, and we speculate on other facts which might explain
this scaling law.

The simulation model, i.e., a single chain dissolved in
solvent, closely follows Refs. [13,14]. The solvent mole-
cules interact with each other and polymer beads via the
same potential that characterizes the interaction between
any two chain monomers: specifically, we truncated the
Lennard-Jones potential at its minimum and shifted it so
that it is repulsive everywhere. The polymer chains are
represented by the Kremer and Grest model [15,16] where
N is varied from 30 to 120 in a series of simulations. The
solution is confined between two walls, uniformly adsorb-
ing to both the polymer segments and the solvent, and
separated by a distance M. In the lateral direction the
system is a square of size L with periodic boundary con-
ditions. L and M varied systematically in a series of
simulations. The reduced density is �� � ��3 � 0:74,
where � is the monomer number density. A velocity rescal-
ing thermostat is used to set the temperature kBT=" � 1
where kB is Boltzmann’s constant. We use a molecular-
dynamics simulation method (MD) with a time step of
0.005, where time is defined in Lennard-Jones (LJ) units.
All structures for N � 80 are equilibrated for 3� 106 MD
steps before the data production runs, which are typically
100� 106 steps long. Our equilibration criteria (discussed
in [13]) found that the relaxation time for N � 80 chains is
3� 106 MD steps. The radius of gyration parallel to the
surface for the adsorbed N � 80 chains is �7�.

Three types of surfaces are considered. First, we mod-
eled a smooth planar surface. As discussed in [13], we in-
tegrate over the surface and derive an effective monomer-
wall potential that depends only on the distance from the
surface. Note that all wall-monomer interactions (includ-
ing solvent and chain monomers) are identical. The
Lennard-Jones attraction was selected such that the inte-
grated potential of about 6kBT caused the polymer chains
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to adsorb strongly and assume known two-dimensional
conformations [13]. We conjecture that polymer adsorp-
tion occurs even though all surface-monomer interactions
are identical since the distance between bonded neighbors
on a chain is slightly less than the monomer size: thus,
adsorbing polymer chains on the surface yields slightly
more energy gain than adsorbing solvent. The second
surface is similar to case (i) but is atomically corrugated.
To achieve this we modify the potential Usmooth�z� of case
(i): U�x; y; z� � Usmooth�z�	1
 A cos�2�xq � sin�2�yq ��, with
q � 1 (in units of bead diameter, �) and A � 0:2. The
third surface is smooth but is constructed to enforce a
‘‘stick’’ boundary condition. Inspired by Maxwell’s idea
of a ‘‘perfectly adsorbing’’ wall, we randomize a bead’s
x-y velocity while keeping its net magnitude constant when
it collides with the wall. This eliminates wall slip.

The Dk was obtained by two independent methods
whose results matched to within 5%. First, we used the
Einstein equation with the mean squared in-plane displace-
ment of the chain center of mass as a function of time.
Second, we use Dk �

1
2

R
1
0 hvxy�t� � vxy�0�idt, where vxy is

a vector that only includes the x-y velocity components of
the chain center of mass.

We first consider analytically smooth walls because they
introduce interesting finite-size effects. In unconfined
(three-dimensional) systems, finite-size effects cause Dk
to increase with system size [17]. In contrast to this expec-
tation, we find that Dk decreases sharply with L until L �
2RG [17]. We conjecture that this follows since the per-
pendicular component of RG decreases with increasing L
especially when L� RG [13]. In this range, the apparent
polymer concentration near the surface is higher since the
chain ‘‘sees’’ its own periodic images. Thus, the chain acts
more bulklike and diffuses faster. Figure 1(b) shows Dk as
a function of N for fixed lateral size of the simulation cell
(L) and a range of distances between the walls (M). While
the slopes in this figure are not quantitative since we have
only 3 points for each M, it is unambiguous that (i) Dk
increases with increasing wall separation and (ii) with
increasing M the apparent Dk depends less on N.
Following [17] we plotted Dk as a function of 1=M. We
find a well-defined 1=M ! 0 limit for each N, but the
resulting asymptotic Dk values are independent of N.
This is not physically reasonable. Thus some other effect
is in play here. We postulate that these unusual finite-size
effects are driven by the fact that the polymer chain resides
essentially within the solvent that is immediately next to
the solid wall. This layer of solvent (as a whole) displays
diffusive behavior, suggesting that it is ‘‘drifting’’ and
‘‘entraining’’ the chain, even though individual solvent
particles are entering and leaving the layer.

Figure 2(a) shows that the diffusivity of the center of
mass of the first layer of the solvent varies as L�2. This can
be rationalized by considering the Langevin equation for
the motion of the entire first layer of solvent: mdu

dt �

��u
 F�t�, where F�t� is a random force, u is the layer

drift velocity, m is the mass of the first layer of the solvent
and � is the friction coefficient. The fluctuation-dissipation
theorem yields, Dsolventk �

kBT
� . Since � is proportional to

layer area, L2, the observed scaling follows. Similarly, we
consider Z�t� � hvxy;c:m:�t�:vxy;c:m:�0�i where vxy;c:m:�t� is
the velocity of the center of mass of the solvent layer.
Figure 2(b) shows that, at fixed wall separation,
Z�t�=Z�0� is independent of L. Thus, it follows that the L
dependence of the Dsolventk is only caused because Z�0�
depends on L. We now employ the equipartition theorem,
Z�0� � kBT=m, where m is the mass of the layer. Again,
Dsolventk � 1=L2 follows. Parenthetically, we point out that
for strictly 2D systems the diffusion constant should di-
verge as ln�L� [18]. However, this argument is not relevant
here since we deal with a three-dimensional system, and
we merely consider the in-plane diffusion of a single layer
of solvent.

Now we discuss how the first layer diffusivity depends
on wall separation, M. Above, we showed that Z�0� only
depends on L. Thus, the observedM dependence of solvent
diffusivity implies that the relaxation time changes with M

 

FIG. 1. Dependence of Dk on lateral size of the simulation cell
(L) and distance between walls (M) for smooth surfaces. (a) Dk
is plotted linearly against L for M � 13� and N � 80. (b) Dk as
a function of N for L � 24� and M � 13, 16.5, 20, 26�.
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[Fig. 2(c)]. It is apparent that the relaxation time for M �
26 is about 4 times larger than forM � 13. Thus, doubling
M requires quadrupling the time needed for a shear viscous
signal to propagate through the medium [19]. (Shear waves
enter because polymer chains sustain Brownian diffusion
in explicit solvent: thus, even though the system is quies-
cent, there are instantaneous shear fields.) We have ex-
plored the generality of these observations and find that
this finite-size effect is observed, but is much smaller, for
corrugated and nonslip walls. In the thermodynamic limit
(L! 1), the diffusivity of the first layer of the solvent
must approach zero. To remove this finite-size effect we
calculate the diffusion of the center of mass of the polymer
chain relative to the center of mass of the solvent layer. We

thus calculate a ‘‘mutual diffusivity’’, which reduces to a
self diffusivity in the thermodynamic limit: Dmutualk �

1
2 �R

1
0 hv

m
x �t�vmx �0� 
 vmy �t�vmy �0�idt, where the index m re-

fers to the velocity of the polymer chain with respect to the
first layer of the solvent [e.g., vmx �t� � vpolymer

x �t� �
vsolvent layer
x �t�].
Figure 3(a) shows that applying this finite-size correc-

tion causes all of our findings for various L andM values to
superpose onto essentially a single curve. We find:
Dmutualk � N�x with x � 0:75
 0:05. To test this power-
law dependence and the finite-size correction procedure on
which it is predicated, we calculated the relaxation time of
the polymer end-to-end distance vector, �smooth, and the
radius of gyration, RGk. Figure 3(c) shows that �smooth �

N2:25. Since Dk � R2
Gk=�, x � 0:75 is recovered from this

independent analysis. It is interesting that, while this value
agrees with what one would expect from the Stokes-
Einstein formula, Dk � 1=RGk (where RGk � N

0:75 for
adsorbed chains), it differs from that obtained in simula-
tions of polymer diffusion on a smooth surface without
explicit solvent, i.e., Dk � N�1 [9–12]. The difference
probably arises since the Monte Carlo simulations without
solvent implicitly assume that adsorbed chain segments
experience independent friction. Apparently, the inclusion
of explicit solvent changes the scaling prediction.

The mutual diffusion on corrugated and nonslip walls
was also calculated; we find x � 1 for both cases
[Fig. 3(b)]. Consistent with these ideas, �rough � N2:5

[Fig. 3(c)], from which the x � 1 can be independently
derived. By way of perspective, this distinction between
values of x has an interesting counterpart in studies of
unconfined polymer diffusion, where the case of strong
hydrodynamic interaction has been called ‘‘Zimm dynam-
ics’’ and that of screened hydrodynamic interaction has
been called ‘‘Rouse dynamics’’ [1,2]. In the present sys-
tems, it appears that, while on smooth walls the diffusion of
polymer chain follows the Stokes-Einstein equation, sur-
face corrugation or a no-slip boundary condition leads to a
dominance of surface friction.

We conclude with a tentative comparison to experi-
ments. The first experimental study of the N dependence
of adsorbed polymer chain diffusion was for DNA diffus-
ing on cationic phospholipid bilayers in the fluid phase
[3,4]. It is readily apparent that their finding of Dk � N�1

parallels our prediction for a no-slip or corrugated surface
and explicit solvent. On physical grounds, we can ration-
alize this in two ways. First, the surfaces possess texture
due to the underlying lipid molecules. Second, it may be
expected that each (mobile) lipid molecule serves to ran-
domize the friction experienced by the adsorbed DNA. We
are aware of only one later experimental study on hard
surfaces which found Dk � N�3=2, i.e., more strongly with
N [6,7]. The models presented in this manuscript do not
reproduce this x � 3=2 scaling, thus suggesting that hydro-
dynamics or uniform surface friction may not be the es-

 

FIG. 2. Analysis of near-surface solvent diffusion for smooth
surfaces. (a) Dsolventk is plotted against 1=L2. (b) Z�t�=Z�0� vs
time for M � 13� and for L values as indicated (c) Z�t�=Z�0� vs
time for L � 13� and for M values as indicated.
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sential physics in these situations. However, our previous
work on purely two-dimensional systems without solvent
had found the x � 3=2 scaling when there were nonadsorb-
ing patches with a spacing smaller than RGk [6,13]. In
future work we plan to check if this scenario extends to
surfaces with attractive patches in full three-dimensional

simulations. We shall also consider the suggestion in
Refs. [6,8] that this scaling arises from lubrication force
interactions between the chain as whole and the substrate
for weakly adsorbed chains that do not have a simple
pancake conformation.
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122, 094904 (2005).

[19] L. D. Landau and E. M. Lifshitz, Fluid Mechanics
(Elsevier Butterworth-Heinemann, Oxford, 2005).

 

FIG. 3. Dmutualk plotted vs N. (a) smooth surfaces. The data are
consistent with the power-law slope�0:75. The symbols refer to
different system sizes as noted in the figure: the first two
numbers are L and the last M. (b) Same as (a) except that the
surfaces are corrugated (squares) or smooth with no-slip im-
posed by a Maxwell demon (circles). Lines through the points
are drawn with power-law slope �1:0. (c) Same as (b) except
that the relaxation time of the polymer chain is plotted.
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