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’ INTRODUCTION

This Article focuses on methods of image analysis that enable
one to go beyond tracking the position of single molecules, to
also analyze their internal conformations, in instances when
molecules display shape fluctuations under various conditions
ranging from thermal equilibrium to deformation under mechan-
ical stress or other external field. As these changes are rapid, we
are interested in real-time measurements during which the need
to acquire data rapidly without signal averaging introduces
experimental uncertainty. These problems of tracking internal
degrees of freedom, which become technically feasible when the
size of macromolecules exceeds the resolution of a microscope in
one or more directions, apply especially to tracking biological
macromolecules, among them filaments such as actin1,2 and
more flexible molecules such as DNA.3�11

Methods of image analysis could not be applied until recently
to problems of this kind; indeed, in the early days the data were
typically acquired by video microscopy, as for example in
measurements of DNA and actin using fluorescence micros-
copy.1�12 Almost from the beginning, special attention was given
to direct observation of polymer conformations perturbed from
equilibrium by mechanical force or electric field, but quantifica-
tion was held back in part by the limited resolution of video
cameras, in part by the inability of routinely analyze images using
methods that would require significant computing power and
data storage capacity. It is understandable that quantification to
date has concerned largely radius of gyration and coarse mea-
surement of shape anisotropy by measures such as the long axis
and short axis components of fluorescence images in two-
dimensional projection in the plane of a microscope.13,14

In addition, many of the early studies suffer from few statistics
and involve analyzing a small number of images.4,11,12 Yet from
the beginning of this line of research, it was evident4�10 that

single-molecule analysis of chain conformations holds the pro-
mise to measure the distribution of chain conformations whose
averages enter into important ensemble-averaged quantities,
such as rheology and electrophoretic mobility. Nowadays, it is
feasible to use inexpensive personal computers to facilitate
analysis of polymer conformations with large statistics and high
accuracy. This study is in the spirit of an earlier pioneering
automated line tracking method, introduced to analyze actin,15

which works well to analyze filamentous macromolecules that are
stiff. The image analysis methods described below are designed
to apply equally to more flexible macromolecules such as DNA.

The plan of this Article is to dwell primarily on the methods of
automated image analysis we have developed to deal with this
problem and to explain the logic that prompted the choice of
those methods rather than others. These methods consist of
three elementary stages: first, to discriminate the shapes of
macromolecules from noise, which we refer to as “feature
finding”; second, to approximate those shapes as lines, which
we refer to as “line tracking”; and third, to discriminate reason-
able from unreasonable fitted conformations in the time domain,
which we refer to as “temporal consistency check”. Finally, this
Article presents two examples of applying the method. Although
the methods are general and should readily be adaptable to other
visualization techniques, here we illustrate the arguments using
sample images from DNA in a fluorescent microscope. We focus
on DNA that is driven by electric fields to adopt relatively
extended conformations and a variety of shapes.

These methods, which build upon image processing methods
reported earlier from this laboratory that at that time did not
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ABSTRACT: We describe a straightforward, automated line
tracking method to visualize linear macromolecules as they
rearrange shape by Brownian diffusion and under external fields
such as electrophoresis. The analysis, implemented here with
30 ms time resolution, identifies contour lines from one end of
the molecule to the other without attention to structure smaller
than the optical resolution. There are three sequential stages of
analysis: first, “feature finding” to discriminate signal from
noise; second, “line tracking” to approximate those shapes as
lines; and third, “temporal consistency check” to discriminate reasonable from unreasonable fitted conformations in the time
domain. Automation makes it straightforward to accumulate vast quantities of data while excluding the unreliable parts of it. We
implement this analysis on fluorescence images of λ-DNA molecules in agarose gel to demonstrate its capability to produce large
data sets for subsequent statistical analysis.
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consider internal degrees of freedom in the tracking of single
molecules,16,17 amount to approximating the true shape of
linear macromolecules by renormalized curved lines, lines that
are optimized to describe the shape within the limits of optical
resolution.

The method is intrinsically coarse-grained, incapable of dis-
criminating internal conformations smaller than the optical
resolution, and hence yields lines designed to describe the contour
of the macromolecule without attention to any structure smaller
than the optical resolution. In the examples of the method
presented below, this resolution was ∼0.3 μm. As methods of
super-resolution imaging18 gain more widespread use, one can
expect even more need for image analysis methods to analyze
internal chain conformations at even higher resolution.

’EXPERIMENTAL METHODS

The image analysis presented below was performed on data acquired
in the following manner.
Fluorescence Microscopy. Data were acquired in epifluores-

cence mode, typically at a frame rate of 33 fps. A 532 nm excitation laser
was focused at the rear focal point of an oil immersion objective (Zeiss,
R-Plan Fluor 100�, NA = 1.45) with 2.5� postmagnification to image
with a resolution of 64 nm� 64 nm per pixel. Fluorescence images were
collected through the same objective and detected by a back-illuminated
electron multiplying charge-coupled device (EMCCD) camera (Andor
iXon DV-897 BV) after filtering out light from the excitation laser. The
movies were converted into digital format and analyzed. A typical data
set consists of 30 movies, each of them consisting of 4000 frames per
movie acquired at 33 fps. The resulting data set of conformations
typically amounts to >104 from thousands of molecules.
DNA Samples. Lambda-DNA (48.5 kbp, Promega) was labeled by

covalently attaching dye, a RhB derivative (Mirus), to heteroatoms on
DNA, at a labeling density of roughly one dye per 5 base pairs. Single-
molecule measurements of DNA chain conformations were made in a
miniature gel electrophoresis setup using agarose gel (final concentra-
tion 1.5% (w/v)), in 0.5� TBE buffer (45 mM Tris, 45 mM borate,
1 mM EDTA), the DNA being at picomolar concentration. Antiphoto-
bleaching agent, ascorbic acid (SigmaAldrich), was present at a final
concentration of 10 mM. A DC voltage was applied across two Pt
electrodes to generate an electric field ranging from 6 to 16 V/cm.

’METHODS OF IMAGE ANALYSIS

The purpose here is to quantify, within the limits of optical
resolution, the linear shapes of CCD images that are noisy, faint,
and diffraction-blurred. In the methods described below, we take
the approach that it is better to reject data from consideration
than to improperly include it in subsequent analysis. Therefore,
especially in the third step of analysis consisting of checks of data
consistency in the time domain, we reject up to 50% of the data
acquisition frames. Examples of the variety of raw data are given
in Figure 1c�e.

We begin by summarizing the algorithm:
(1) Filter digitized images to remove shot noise by perform-

ing a two-dimensional Gaussian smoothening.
(2) Calculate the mean and variance of the intensity of pixels

in each image and keep high intensity pixels as candidate
molecules.

(3) Group pixels/points into separate molecules using a
specified threshold distance.

(4) Identify a longest path through each group of points using
an intensity-weighted minimum spanning tree.

(5) Local quadratic fits to adjust the positions of the pixels.
(6) Additional position refinement by Gaussian fit to find the

center using the cross-section intensity profile at each
position.

(7) Find a new longest path from these points by generating a
new minimum spanning tree from these points.

(8) Smooth the line with a discrete wavelet filter.
(9) Perform prescreening to reject unreasonable lines such as

those which drastically fluctuate in length, are looped, or
are from molecules that are out of focus.

(10) Compare line with previous and subsequent lines in
time. If two lines are similar from a set of around 20
frames, then they may be retained for analysis.

Identifying Each DNA Molecule. For various practical rea-
sons, despite one’s most careful efforts to optimize image quality,
the signal-to-noise ratio is never satisfactory in unprocessed
images (Figure 1a). First, the finite DNA concentration results
in background fluorescence from other molecules that contribute
to the image despite being located outside the focal plane.
Second, the DNA that we track moves rapidly under electro-
phoresis, leaving limited time to collect photons at each position.
Third, the elongation of chains under electric field lessens the
local fluorophore density. We find that applying a Gaussian filter
with a width of 1 pixel locally at each pixel, with Gaussian
weighted contribution of intensity from neighboring pixels,
significantly reduces noise without compromising the main
features of a DNA molecule (Figure 1b).
As each image consists primarily of background, only a few

pixels representing the dilute DNA molecules of interest, we
estimate background intensity noise from the mean intensity at
each pixel, and we estimate noise level from the variance of these
pixel intensities. After subtracting this background from each
pixel in the image, we retain for subsequent analysis only pixels at
which the residual intensity exceeds a threshold, typically set
to be 7�10 times the noise level. Control checks show that

Figure 1. Examples of raw data in which λ-DNA (contour length 16
μm) displays various conformations in an optical microscope. Color bar
corresponds to relative intensity within each image. (a) A typical
unprocessed image as input raw data. (b) A local Gaussian filter reduces
noise significantly. (c�e) Additional examples of various polymer
conformations with final line tracking results (black line) overlaid. Scale
bar: 1 μm.
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subsequent line tracking does not depend sensitively on the
detailed choice of threshold value, nor on whether the image of
the DNA is included in estimation of the background.
Next, the image analysis makes judgments to decide whether

two features close in space belong to a single molecule. It is a
problematical question because low signal-to-noise ratio pixels
may in principle register the absence of DNA, but also may
indicate that low intensity parts of the molecule, in some cases
even vanishingly low intensity due to various reasons discussed
earlier in this section. Figure 2a illustrates a stretched DNA
whose middle part presented intensity less than an intensity
threshold. To analyze this situation, first we connect pixels whose
distance is less than a threshold and consider tentatively the
connected pixels to come from a single molecule. Depending on
the threshold selected, the pixels in an image then cluster into
either a single grouping or several. For example, using a threshold
distance of 8 pixels, Figure 2b presents two clusters of pixels,
whereas a threshold of 9 pixels implies just a single cluster of
pixels; the difference depends onwhether critical connections are
allowed or disallowed by that threshold (white lines in Figure 2b).
To automate the process of line tracking, to perform this grouping
of pixels first we apply a fixed threshold and analyze the best
line through the implied grouping. Unreasonable lines are then
removed at a later stage of analysis through the automated temporal
consistency checks discussed in a later section.
Tracing a Line through Each DNA Molecule. This relies on

the concept of a minimum spanning tree, a concept in graph
theory that quantifies the shortest path length between nodes in
an image.19 Here, the nodes in the image are the pixels of the
molecule defined from the previous section. Figure 3a illustrates
the concept schematically, and Figure 3b illustrates it for a given
set of data acquired in our experiments. First, a tree is constructed
by connecting every two pixels. However, because some pixels
are bright and others are dim, and we wish to preferentially
include pixels of high intensity to minimize the chance of result-
ing lines being trapped on noise pixels, the connection length
between pixels is assigned not simply as the spatial distance by

which they are separated, but weighted by the inverse of their
sum intensity. A minimum spanning tree is then generated
choosing from existing connections based on each connection
length. We find that this feature of intensity weighing is often
necessary but that the exact intensity weighing method is not
critical in line tracking; for example, an alternative weighting,
exponential weighting according to intensity, gives similar re-
sults. Searching through this minimum spanning tree, one can
find one path between two termini that contains the largest
number of pixels: this is the longest path through this molecule
(Figure 3c).
To yield the final line tracking result (Figure 4a), we follow a

four-step progressive refinement of the result. First, to the line,
we perform a polynomial fit, typically a quadratic fit, locally on
adjacent pixels (Figure 4b). The local fit is preferable to fitting the
entire line with a polynomial because the overall shape is some-
times highly curved. An additional advantage of local fitting is
that to improve accuracy, one can select at each point which
coordinate, horizontal x or vertical y, to fix or fit. The choice to fix
or fit is done by performing both x and y fits and choosing
automatically whichever minimizes local fitting error. After this
automated process, each pixel is reassigned a new point that has a
modified x or y position. This local fitting with flexible x or y is most
faithful to the original shape than a single global polynomial fit and
sometimes the only possible way to fit a highly curved shape.
To further smooth the line, the second step is to fit the cross-

section intensity profile at each point along it to a Gaussian inten-
sity profile, the principle being that diffraction-limited images are
expected to be described by this function. The position of each
pixel along the line is then accordingly adjusted to the center of
the Gaussian (Figure 4c); typically, this adjustment is on the
order of one pixel. In this fitting, the orientation of the cross
section is taken to be perpendicular to the tangent line at each
point. As the coordinates at this stage of the analysis are typically

Figure 2. Feature finding: Grouping pixels into one DNA molecule or
several according to the threshold distance between pixels. (a) An
example of an image in which only a fraction of the middle pixels have
high enough intensity to be recognized as signals. (b) The connections
between pixels discriminate whether they cluster into one grouping or
several. The leftmost two white connections are critical; if not present,
this image is treated as two groupings, each one from a different
molecule. The pink connections are separated by 5�8 pixels. The white
connections are separated by 8�9 pixels. Scale bar: 1 μm. Color bar is
the same as in Figure 1.

Figure 3. Line tracking: Usingminimum spanning tree analysis to find a
longest path through pixels to identify a line through the DNAmolecule.
(a) Schematic illustration of the notion of minimum spanning tree. The
edges belonging to the minimum spanning tree are drawn in solid lines,
whereas other edges are drawn with dashed lines. Next to each edge, the
indicated numbers specify the relative weight. (b) Example of an
intensity-weighted minimum spanning tree (white) overlaid onto real
data. (c) For the data in panel (b), a longest path (thick white line) is
identified from analyzing the minimum spanning tree. Scale bar: 1 μm.
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not located on integer pixel positions, the intensity at each point
is calculated on the basis of the surrounding four pixels (integer
coordinates) via linear interpolation.
Third, the minimum spanning tree is recalculated from the

points that resulted from the second step (Figure 4d). The
process to do so is the same as before, except that adjacent points
are linked without intensity weighing. This step is to deal with
occasional failures in the second step to find an accurate tangent
direction and hence the correct cross section. For example, the
radical jag in Figure 4c came from this occasional failure.
Although the line looks jagged in this zoom-in presentation, this
new position deviates less than two pixels from the original. We
exclude these anomalous positions nonetheless using aminimum
spanning tree.
Last, high-frequency noise is removed using a wavelet filter

(Figure 4e). It is convenient to employ a discrete wavelet
transform based on the Daubechies-16 wavelet of the line. The
level 2 coefficients, which are the decomposition in high fre-
quency range corresponding to 2�4 neighboring points, are soft
thresholded such that coefficients exceeding the threshold, δ, in
magnitude were pushed toward zero by δ, while those less than
or equal toδwere set to zero. The threshold is calculated through
the universal threshold, δ = σ~(2 ln N)1/2, where N is total
number of points and σ~ is estimated via median absolute devia-
tion (MAD) of coefficients, σ~ � (median{|ci = 1,...,N

x,y (2)|})/
0.6745. The choice of coefficients, working at the level corre-
sponding to 2�4 neighboring points, is primarily to remove high
frequency noise in the line. The smoothened line is obtained by
inverse transforming the coefficients after thresholding.
Temporal Consistency Checks. The idea is to err on the side

of caution: we aim to exclude questionable data from the data set
that we construct for subsequent analysis. As the automated nature
of this data analysis makes it straightforward to accumulate vast

quantities of data, there is no disadvantage to excluding from
analysis the unreliable parts of it.
As a premise, we take the view that when image acquisition is

rapid relative to those conformational fluctuations of DNA that
occur on distances resolvable within optical resolution, a true line
is likely to be similar to those close to it in time, but an unreason-
able line is unlikely to satisfy this criterion. Dissimilar lines may
arise for a number of uninteresting reasons: mistaken grouping of
data in the first level of analysis to identify the starting DNA
molecule; molecules whose extension is so limited that it hardly
exceeds the optical resolution; molecules out of focus; and an
error in generating the minimum spanning tree. Reasoning from
this premise, we compare each line, acquired at a given moment
in time, to its antecedents and progeny over the span of a few
seconds. When two lines are similar, both are regarded valid and
included in the final set of lines.
To implement this idea, the line that traces the contour of each

DNA molecule is divided into 21 notional fiducial markers of
equal spacing along the line and the average distance by which a
line is displaced from another line within the temporal vicinity of
a few seconds is measured against a threshold value, as drawn
schematically in Figure 5a. A small average distance means two
lines are similar and are likely to both be valid. After this selection,
anomalous lines are removed, as illustrated in Figure 5b and c.

Figure 5. Tests of temporal consistency: Selecting reasonable lines
from temporal comparison of images at different times. (a) Each line is
overlaid with 21 notional fiducial points. Within the temporal vicinity of
a few seconds, the average distance between each point on any two lines
is evaluated (red lines). When this is less than a threshold designation of
similarity, the lines are deemed valid and kept. Lines that fail this
similarity criterion are rejected as physically unreasonable. In this typical
example, the threshold is 0.4 μm. (b) Raw data: Three lines from the
level of analysis in Figure 4. (c) Outcome of the test for temporal
consistency: Line 2 is rejected. The text describes additional prescreen-
ings included in these checks. Scale bar is 0.4 μm.

Figure 4. Four-step refinement of the line identified in each single
image. The highlighted region in panel a, magnified in panels b�e, is
used to illustrate how a line changes from each step to the next step
during the refinement procedure. In panels b�e, starting lines and
symbols are white, and the line resulting from that step is drawn in black.
(a) Starting from a longest path connecting pixels (white, same as in
Figure 3c), a four-step refinement yields the final line tracking result
(black). (b) A polynomial fit. (c) A Gaussian fit to recenter. (d) A
minimum spanning tree through the resulting points in (c). (e) Wavelet
smoothening. See text for details.
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For the experimental tests reported below, we find selected lines
and subsequent analysis results converge in a wide threshold
window between 0.4 and 0.8 μm, but it is likely that the optimal
threshold will depend on the application to which this method is
put. We typically choose a threshold value of 0.4 μm to insist on
high accuracy. It is our experience that a more stringent threshold
sometimes fails to capture the dynamics in conformation change
and might introduce bias in the data set.
We find that precision of the final set of lines is improved by

performing a series of prescreenings before the selection. This
automated process searches for many anomalous features; when
any of them is identified, that frame of the data set is excluded
from analysis. First, we remove regions where line length fluctua-
tion with time is frequent and unreasonably drastic. We compare
the fluctuation before and after applying a third-order Savitzky�
Golay FIR smoothing filter. Frames associated with large dis-
crepancy (>1.3 μm) are excluded. Second, lines that are too short
relative to their neighbors in time are considered to be the likely
result of partial features due to incorrect grouping ofmolecules or
else to low intensity parts not identified as signal; as these
anomalously short lines can potentially introduce large errors
in further quantitative analysis, they are removed. Typically we
reject, as unreasonable, putative data whose length is shorter by
1 μm than in adjacent frames. In the experimental system that we
study, we find the most rapid length fluctuations to occur about 1
order of magnitude slower than the criterion we use here to reject
potentially wrong data. Third, we exclude dim molecules that
have both low shape anisotropy and large short axis component
as they are likely to be out of focus. Fourth, the size of a candidate
molecule is used to further exclude partial features. Fifth, the end-
to-end distance of a line is considered, relative to the length of
that line; if the ends appear to loop together too closely, as can
happen when the image area is close to the optical diffraction
limit even though it is less than one-half the mean radius of
gyration of the system we study here, this also is considered likely
to be anomalous and is excluded from further analysis.
It is true that, in principle, the exclusion of data might risk

biasing the data set. Checking the radius of gyration before and
after this selection, we find no bias toward a subpopulation of
molecules. The distribution of radius of gyration remains un-
changed indicating that the criteria, by which lines are considered
to be unreasonable, do not depend on size of the molecule. The
exception is that the smallest 10% of molecules (radius of
gyration smaller than the diffraction limit, which corresponds
to less than one-half the mean radius of gyration of λ-DNA) do
not contribute to the final set of lines. Line tracking should not be
expected to work well in this situation. In addition, features so
small are likely to be either noise or fragmentedmolecules, and in
this respect it is proper to exclude them. Testing directly for
hypothetical bias of the data, we also measured average DNA
velocity along the electric field direction, with and without the
selection of data just described, and found nomeaningful difference.

’APPLICATION TO SPECIFIC SYSTEMS

To illustrate how automated line tracking allows visualization
of polymer conformation changes in dynamic processes, we now
present two examples, both of which will be fully explored in
subsequent reports from this laboratory. The point of these
examples is simply to illustrate the quality of data that can be
obtained routinely, with large statistics and high fidelity, using the
image analysis methods presented in this Article.

Figure 6 illustrates experiments in which a λ-DNA molecule,
attached at one end to the agarose gel in which it is embedded, is
subjected to repetitive stretch and release by applying a periodic
electric field. In Figure 6a, which overlays lines tracked from
hundreds of frames when this molecule was subjected to repeated
stretching and releasing from a square wave, one notices that
stretch�retraction events differ subtly from one another, differ-
ing not just in times for these processes to be accomplished, but
also in the paths by which the molecule is threaded through the
gel. Figure 6b illustrates a small number of the accompanying
length fluctuations during these stretch and release events.
Whereas stretching and recoiling both transpire on the time
scale of 1 s, a recoil process is also clearly evident between two
stretches, before the molecule takes on a different path.

Figure 7 illustrates data from a different experiment: λ-DNA
migrating through agarose gel under a DC field of 16 V/cm. This
set of data, consisting of∼4 � 104 evaluations of the curvilinear
end-to-end distance of the molecule, shows clearly the statistical
nature of the curvilinear end-to-end distance: while the mean
value is well-defined, and the most probable value is well-defined,
the distribution around averages is large.

’PROSPECTS

In this computer age, with large computing power and digital
storage capacity readily accessible, one can use inexpensive
personal computers to facilitate image analysis of optical images.
Here, we have introduced automated line tracking methods
applicable to tracing the linear coarse-grained shapes of biomo-
lecules, those shapes larger than the optical diffraction limit, and
have illustrated their application to analyzing the conformations
of fluorescent-labeled λ-DNA when it is stretched by electric

Figure 6. An example of applying automated line tracking analysis. A
λ-DNA molecule with one end attached to the agarose gel in which it is
embedded is subjected to repeated stretch and release using a square
wave electric field alternating with period about 10 s between 16 and
0 V/cm. (a)Overlay of all lines tracked over the time of 25 s, at 33 frames
per second, showing the distribution of paths by which the molecule
threads through the gel. Color bar denotes time. Scale bar: 1 μm. (b)
Lower panel: Square-wave electric field applied to the DNA over 25 s.
Upper panel: Length fluctuation of lines tracked during this time
window, showing stretch and retraction. Vertical dashed lines show
the time at which the electric field switches on and off.
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fields. These automatedmethods enable the facile acquisition of large
data sets and by rational extension should readily be adaptable to ana-
lysis of data obtained from other visualization methods. It is different
in spirit from principal component analysis of DNA, which expresses
dynamic information in a virtual phase space of orthogonal basis sets
that can be problematical to interpret physically.20

While the fidelity of tracking reported here is believed to have
been optimized within the limits achievable using optical resolu-
tion, it is certainly the case that this image analysis is limited in
resolution. The line tracking introduced in this study represents a
coarse-grained representation of the actual contour of λ-DNA;
this is why, for example, even the longest lengths plotted in
Figure 7 are a factor of 3 smaller than the known contour length
of the molecule, 16 μm. Thus, while these methods are well
adapted for quantifying time scales of dynamic processes (illus-
trated in Figure 6) and also their distributions (illustrated in
Figure 7), the numerical values of the lines do not, at the present
time, have one-to-one correspondence with the actual molecular
makeup, but should be viewed instead as coarse-grained repre-
sentations.We remark that this coarse-graining can carry physical
meanings overlapping with the classic bead�spring notation,
especially when the optical resolution limit coincides with the
fundamental length scale of the system; for example, the pore size
of agarose gel, ∼200 nm, nearly coincides with the diffraction
limit in this study. Provocatively, the same also holds for many
other biomacromolecular solutions.
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