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ABSTRACT: Particle tracking, the analysis of individual moving elements in time series
of microscopic images, enables burgeoning new applications, but there is need to better
resolve conformation and dynamics. Here we describe the advantages of Delaunay
triangulation to extend the capabilities of particle tracking in three areas: (1)
discriminating irregularly shaped objects, which allows one to track items other than
point features; (2) combining time and space to better connect missing frames in
trajectories; and (3) identifying shape backbone. To demonstrate the method, specific
examples are given, involving analyzing the time-dependent molecular conformations of
actin filaments and λ-DNA. The main limitation of this method, shared by all other
clustering techniques, is the difficulty to separate objects when they are very close. This can be mitigated by inspecting locally to
remove edges that are longer than their neighbors and also edges that link two objects, using methods described here, so that the
combination of Delaunay triangulation with edge removal can be robustly applied to processing large data sets. As common
software packages, both commercial and open source, can construct Delaunay triangulation on command, the methods described
in this paper are both computationally efficient and easy to implement.

■ INTRODUCTION
We are in the midst of an imaging revolution. Going beyond
the older use of images to provide primarily qualitative
information (important as that is), rapid developments are
underway in quantitative imagingthe standardized quantifi-
cation of large statistical data sets, often from time series of
images, and usually enabled by rapid computer processing.
While particle tracking of moving objects in time series of
images has become routine,1,2 a great limitation is that the
standard particle tracking analyzes diffraction-limited spots, for
example in single-molecule studies.3,4 This paper concerns
three significant limitations of the standard methods: first,
difficulty to separate reliably objects that are in close proximity;
second, difficulty to identify the same moving element in time
series in which there are some missing frames; third, difficulty
to describe irregular, asymmetric shapes. This paper explains
how to extend these capabilities using Delaunay triangulation in
ways that are computationally efficient and easy to implement
with common software packages.
The technical problem is the following. While to identify

different objects in an image often seems obvious to one’s eyes,
identifying them automatically using computers for quantitative
analysis is often hampered by noise in the image, irregularity of
shapes, and proximity of objects. The first step to separate
objects is to identify the pixels that comprise each object, but in
general it is not possible to identify all points correctly, not
when there is low signal-to-noise and intensity variation within
an object. This precludes simple grouping by connectivity.
When dealing with objects of irregular shape, to separate them
becomes more difficult. Standard clustering techniques such as
K-means and hierarchical have limitations: K-means5 is only

suitable for spherical shapes with similar sizes and hierarchical6

works only when all the objects have similar shape (detailed
comparisons are presented below). Difficulties arise when the
objects are highly nonspherical and random; it is a serious
problem as this class includes important moving objects such as
polymer chains,7,8 rod-like bacteria,9 highly branched neu-
rons,10 and irregular domains in phase separation.11

After one succeeds in identifying objects quantitatively and
pixel-wise, connecting the position of an object from one frame
to the next can reveal useful information about the dynamics of
motion.9,12,13 But this is problematical to do because
connecting objects between frames to build up trajectories
can be difficult when the object disappears from view for a few
frames before becoming visible again, which is common due to
blinking of fluorophores14 and diffusion in and out of the focal
plane. If, in analysis, one decides to terminate each trajectory
when the moving object becomes invisible, this will improperly
bias the data toward short trajectories and will interfere with
accumulating information about long time dynamics. There are
attempts to connect the gaps in time after linking particles in
adjacent frames.15,16 The new method proposed here
simultaneously connects the gaps in space and in time. A
better method to bridge time gaps may also further improve the
performance of super-resolution imaging techniques, such
STORM17 and PALM,18 by combining the signal that single
fluorophores present during different activation cycles.
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Another application of Delaunay triangulation is in the study
of shapes that change with time: for example, the quantification
of cell shape19 and polymer chain configurations.20 While
center-of-mass motion is the standard quantity of which to keep
track,12,13 a good descriptor for shape is less obvious. Principal
axes,7 moments,21 ellipticity,22,23 and degree of asymmetry24 are
some of the metrics that have been used to describe shapes.
While each captures some important aspects of the shape, such
single-number quantifications cannot describe internal degrees
of freedom, such as twists and turns within the shape. But it is
not helpful to go to the other extreme and retain for analysis all
the points in an object; if the information retained is too large,
changes of the same shape cannot be discriminated either. The
backbone of objects strikes a fine balance between keeping too
few and too many details.
Delaunay triangulation, developed in mathematics and

computer science of graph theory, contains tools useful for
these problems. As we show below and illustrate in detail, it
serves to identify objects not only in space but also when the
time variable is added. In this argument, the concept of spatial
proximity extends to connecting trajectories; one considers
time as an additional dimension orthogonal to space, defining
the distance between two points as a combination of their
distances in space and time, thus augmenting the effectiveness
of particle tracking through intervening times. The application
to identifying backbones of objects follows similarly, as the
minimum spanning tree, defined below, of the graph of all
distances for a set of points is a subgraph of their Delaunay
triangulation.25 In this paper, we demonstrate how Delaunay
triangulation can be applied to these problems and how the
performances compare with existing methods.

■ METHODS
Delaunay Triangulation Explained. Delaunay triangu-

lation divides a space into subregions according to the rule that
the circumcircle of any triangle must be empty (Figure 1).
Possessing the unique property that all nearest neighbors are
connected, it quantifies spatial proximity very well. As spatial
proximity is the physical basis for clustering points, this explains
why Delaunay triangulation is widely used in urban and
geological studies to aggregate feature points.26 It amounts to
dividing space into a triangular mesh subject to the requirement

that no point is inside the circumcircle of any triangle of the
mesh.
Popular mathematics software packages offer Delaunay

triangulation as a simple command, based on various alternative
algorithms that can depend on complex graph theory. However,
the method is simple to understand intuitively when one
considers just a few points. Figure 1 illustrates it for 4 points in
a plane. One observes the correct implementation (Figure 1a),
an incorrect triangulation (Figure 1b), and the computation
time of this method relative to brute-force calculation (Figure
1c). The Discussion section of this paper elaborates on the
information presented in Figure 1c.

Separating Objects. The process of separating objects
includes four steps: (1) Selecting an intensity threshold and
binarizing the image according to this threshold; the threshold
is typically selected as n standard deviations above the average
intensity of the image. Here, for physical reasons one selects n
depending on the signal-to-noise ratio of the image. (2)
Performing Delaunay triangulation (Figure 2c) on the points in
the binarized image (Figure 2b); this is done using the built-in
function in common software, for example “Delaunay” when
one uses Matlab. (3) Selecting a threshold for the maximum
distance between two neighboring points in the same object
and removing edges in the Delaunay triangulation that exceed
the threshold (Figure 2e). (4) Grouping the connected points
by the remaining edges (Figure 2h).
To achieve successful separation, the choice of appropriate

threshold is critical. The performance of the method depends
on two competing factors: the separation between objects and
the gap within an object. The higher the ratio between the two,
the less sensitive the method is to the choice of threshold. Too
low a threshold can cause objects to be artificially fragmented
(Figure 2d,g) while too high a threshold can cause nearby
objects to artificially cluster together (Figure 2f,i). It is often
necessary to iteratively test different candidate threshold values
to obtain one that works the best. In Figure 2, we purposely
illustrate a very challenging example with two objects being
very close at the bottom of the image and with part of the
largest object in the bottom left corner of the image not being
as bright as the rest so that the object becomes fragmented by
binarization. This example gives a ratio close to 1, which
approaches the limit of the method. Therefore, we see a high

Figure 1. Example of performing Delaunay triangulation on four points in a plane. The triangulation in (a) is correct because the circumcircles
(blue) of both triangles (red) exclude the fourth point (green). Case (b) shows an incorrect triangulation where the circumcircles of both triangles
contain the fourth point. This tutorial example generalizes to arbitrarily large numbers of points. The text discusses the example of multidimensional
space where one axis is position and a second axis is time. (c) Comparison of computation time using Delaunay triangulation (blue) and brute-force
strategy (red) of calculating the distance between all points on an image. While the brute-force approach is independent of the dimension, 3D takes
longer (blue solid line) than 2D (blue dashed line) for Delaunay triangulation. The brute-force approach is relatively advantageous only for 3D
trajectories containing few points (3D: two spatial coordinates plus time), as discussed further in the Supporting Information.
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sensitivity to the threshold value, as expected, but to mitigate
this problem, one can exploit the special properties of the edges
linking two objects.26 Zooming in (Figure 3a), one notices that
the edges that connect the two objects are substantially longer
than neighboring edges. On the basis of this observation, one
can remove such edges by comparing edge lengths locally. For
each point, if an edge connects to this point exceeds a local

threshold, the edge is removed. The local threshold is then
determined by26

β= + · _P P Gthreshold( ) mean ( ) mean variation( )j G j i
2

i (1)

where meanGi

2 (Pj) is the mean length of the edges formed by
the points in the second-order neighbors of point Pj. Second-
order neighboring points provide a window to look at local
details. Furthermore, β can be tuned to adjust sensitivity to
local variations. Since the number of edges formed by second-
order neighboring points can be small, the error associated with
calculating variations can become significant. Therefore, the
mean variation of all the subgraphs mean_variation(Gi) is used
as the variation indicator.
Another type of local inconsistency can be links between

clusters as shown in the example in Figure 3c. Consider the
point circled in red in Figure 3d, it has multiple second-order
neighbors to the left, but only one to the right. One way to
quantitatively capture this is to introduce the idea of local
aggregation force,26 which sums up vectorially the influence of
the second-order points on a given point:

⃗ = ⃗ ∈F P P
d P P

e P N P( , )
1

( , )
, ( )j k

j k
P P k G j2 ,

2
j k i

(2)

while the direction of the vector eP⃗i,Pk is determined by the
positions of the points. The length of the vector should be
inversely proportional to the distance between the two points
so that points located far away have lesser influence, hence the
normalization by d2(Pj,Pk). Summing up the individual local
aggregation force gives the cohesive local aggregation force on a
point:

∑⃗ = ⃗ ∈F P F P P P N P( ) ( , ), ( )t j j k k G j
2

i (3)

As seen from Figure 3d, the cohesive aggregation force on point
located on the border of a cluster point to the interior of that
cluster. This causes the point to have a tendency to move into
the cluster and implies that the edge pointing to the opposite
direction should be removed. Mathematically, this is done by
looking at the angles between the cohesive aggregation force
vector and the vector between the point and its first-order
neighbors. When angles exceed a reasonable threshold, 150° for
this example, then the edge is removed.

When To Apply Local Edge Separation. The method is
automated to test all points. This is because a priori one cannot
know which local edges should be removed. The computation
time is not expensive as it scales linearly with the number of
points. Note that for points in the interior of any cluster the
magnitude of the cohesive aggregation force will be small as the
forces due to neighbors in opposite directions tend to cancel
each other. The direction of the cohesive aggregation force is
therefore random, and removing edges can result in arbitrary
segmentation of the cluster. In implementing the edge
separation method, we avoid this pitfall by applying the angle
criterion to only points whose cohesive aggregation force
exceeds a set threshold. Figure 3 illustrates a cluster with
nonsegmented, well-defined interior.

Connecting Trajectories. The same procedure can
connect trajectories, the only difference being that instead of
using a threshold to identify feature points as would be seen by
one’s eyes, a new coordinate system defines trajectory points.
The idea is that a trajectory can be viewed as an object whose
points lie in a temporal−spatial coordinate system.

Figure 2. Example of separating actin filaments in a fluorescence image
(images taken from ref 7). The raw image (a) is first binarized (b) and
a Delaunay triangulation (DT) (c) is constructed on the points that
were set to unity in the binarized image. Different edge thresholds
were used to remove the long edges (red) and the remaining edges
(blue) are shown in (d−f). Finally points that are connected by the
remaining edges are grouped together (g−i). Each group is
represented by a different color. Proper threshold (“thld”) choice
(h) is important, as depending upon the threshold chosen, either
oversegmentation (g) or undersegmentation (i) segmentation may
occur. (j−l) show the results obtained using other clustering functions
available in Matlab: k-means, fussy c-means, and hierarchical.

Figure 3. Examples of local removal of inconsistent edges. (a) This
shows a zoom-in of the boxed area in Figure 2f. Edges formed by
second-order neighbors of the asterisk point are highlighted in red. (b)
This shows the result after removal, from (a), of long local edges. (c)
This shows an example of local link edges removal. (d) This shows the
cohesive aggregation force of the circled point. (e) Edges that point in
the opposite direction from the cohesive aggregation forces are
removed. (f) This shows the final clustering result.
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Consider the simulated example in Figure 4; two particles
diffuse in a micrometer-sized 1D system and are observed every
1 ms. The two trajectories are easily identified by frame-to-
frame spatial comparison, except for the problematical last
point where there is a time gap. This is an example of the
usefulness of Delaunay triangulation, as both of these
trajectories can reach the last point through either a jump in
space or time. A “slowly” moving object is most likely to move
a short distance even after a long time elapses; it is unlikely to
move a long distance quickly. Conversely, a “rapidly” moving
object is most likely to move a long distance quickly; it is
unlikely to remain for a long time near the same location. To
determine which is more likely quantitatively, we begin by
selecting a conversion factor for time and forming a 2D
coordinate system with time as the orthogonal axis. Having
established the equivalent scales of the temporal and spatial
axes, we then assess, from the relative distance between points
in this 2D space, the relative likelihood of the options. But as
the distance between orthogonal points depends on the
equivalent scales of the axes on which they sit, how to set
their equivalent scales requires judicious thinking. The best
choices of equivalent scales depend on the physical problem at
hand. When the motion is ballistic or has persistent direction,
such as active transport of endosomes by molecular motors
along microtubules or the electrophoresis of DNA chains where
there is a well-defined velocity, the obvious conversion factor
between space and time is the velocity. One can multiply the
time data with the velocity to convert to spatial units. For
example, if the velocity is 100 nm/s, then 10 ms will be
converted to 1 nm, so 10 ms in the temporal dimension should
have the same length as 1 nm in the spatial dimension.
When the motion is diffusive as the example in Figure 4, the

choice of equivalent scale should be guided by the diffusion
coefficient. Using the diffusion coefficient is not as straightfor-
ward as velocity because distance is less than proportional to
linear time. However, in selecting the equivalent scales, it
transpires that the exact number does not affect the result
significantly, so long as the order of magnitude of equivalent
scale selected is reasonable for the physical system one is
considering. For example, if the diffusion coefficient is ≈0.5
μm2/ms, 1 μm in space can be approximated to have the same
length as 2 ms in time. With the sample trajectories in Figure 4,

equivalent scale in the range of 1 μm to 0.25 ms and 1 μm to 3
ms give the same result. In fact, to select the diffusion
coefficient as the base conversion factor will be a better
approximation when the time gap is small, than if it is large, and
anyway large time gaps are unlikely to occur in trajectories. In
the rare cases of long time gaps, the problem can be mitigated
during the edge removal step described in the previous section
of this paper, by using the correct conversion between time and
space in calculating edge lengths:

= − + | − |L x t x t x x D t t(( , ), ( , )) ( )1 1 2 2 1 2
2

1 2 (4)

In Figure 4, we consider two diffusion coefficients: ≈0.5 and
≈5 μm2/ms. For the former, considering that on average the
particle will move 0.5 μm2 in 1 ms, an equivalent scale of 2 ms
to 1 μm is selected and in this coordinate system, long jumps in
space are not likely (Figure 4a). For the latter case, in 1 ms the
average distance traveled will be 5 μm2 on average. Therefore,
the equivalent scale of 0.2 ms to 1 μm is selected (Figure 4b),
and longer jumps in time are not likely. This done, it is simple
to perform Delaunay triangulation in the new coordinate
system and remove edges that exceed some reasonable
threshold, then to cluster the points into trajectories. In this
case, the competing factors are the separation between points
that belong to different particles and the gap between points
that belong to the same particles. Local edge removal can again
be applied to reduce sensitivity to the value of threshold with
which the analysis begins. Note that in this example, for all but
the last point, the trajectories identified by the Delaunay
triangulation using either equivalent scale are the same as those
connected by frame-to-frame comparison. Therefore, Delaunay
triangulation can connect the trajectories on its own and one
does not need to use it together with frame-to-frame
comparison. The advantage of Delaunay triangulation is that
it provides a rational decision of how to treat the final point of
the trajectory. If the edges connecting the final point to both
trajectories turn out to be too long, then the final point will be
assigned as the start of a new trajectory. Physically, this could
happen when a new particle enters the field of view, and hence
becomes a useful method to discriminate genuine new particles
from older particles that had momentarily disappeared from
view.

Figure 4. A 1D simulated trajectory to illustrate how Delaunay triangulation applies to trajectories with missing frames. The 1D trajectories (red and
green) are plotted in 2D with time as the orthogonal dimension. The problem is to decide, to which trajectory does the last point in time belong? If
passage in time is given a relatively small length (a), the jump in space is relatively large and the last point should belong to the red trajectory on
physical grounds. Using Delaunay triangulation, after removing the long edges, the last point indeed is connected to the red trajectory. But if the
passage in time is given a relatively large length (b), the last point would be assigned to belong to the green trajectory.
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Identifying Backbones. Whereas after isolating an object,
simple spline curve fitting can identify its backbone provided
that it does not contain sharp turns, this works poorly for
objects with sharp turns, such as the DNA molecule in Figure
5a. Delaunay triangulation is helpful in such cases. Two

additional steps are needed after performing Delaunay
triangulation on the points of an object: (1) find the minimum
spanning tree of the edges from the Delaunay triangulation; (2)
locate the longest path in the minimum spanning tree. A
minimum spanning tree is a subgraph that connects all the
vertices of a graph with the lowest weight. Mathematically, the
minimum spanning tree for the complete graph of the distances
between the vertices is known to be a subset of the Delaunay
triangulation of the same set of vertices.25 It is part of common
software packages. For example, in the MatlabBGL graph
library27 used for the current study, the function called “mst”
calculates the minimum spanning tree of a graph.
The backbone of the object should simultaneously minimize

both the length of the path connecting the two ends of the
object and the extent of the excursions away from the backbone
required to reach all other points. The subset of the edges
forming the longest path in the minimum spanning tree
provides a good approximation of the optimal backbone,
tending to balance these two competing optimizations. By
definition, the minimum spanning tree between any pair of

points will take the shortest path between those points except
when adding additional intermediate points results in a
reduction in the length of the paths required to connect the
remaining points in the graph.
When computing the minimum spanning tree, it is critical to

use intensity-weighted edge lengths:

= −
+
⟨ ⟩

⎛
⎝⎜

⎞
⎠⎟L P P d P P

I I

I
( , ) ( , ) expj k j k

j k
w

2

(5)

where ⟨I⟩ is the average intensity of all the points. This is
because if simple Euclidean edge lengths were used, as in Figure
5d, in many subregions of the graph the minimum spanning
tree would be highly degenerate. Even if the degeneracy could
be broken when considering larger graphs, perhaps the entire
graph, and even if this produced a unique minimum spanning
tree, the result would be artificial for the following reason. The
structure of the minimum spanning tree depends most strongly
on pixels at the edges of the thresholded region; therefore, the
longest path within the minimum spanning tree exhibits
significant randomness and is likely to be off center (Figure
5d). In contrast, when considering the intensity warped space,
distances between high intensity points are relatively shorter
than between dimmer ones. Therefore, the shortest path
preferentially includes the brighter pixels (Figure 5e). In
addition to producing better and more robust results, weighing
algorithms that favor edges between bright pixels are physically
reasonable because in experiments based on fluorescence
imaging, the local intensity normally depends on the local
density of fluorophores.
Note: this result is insensitive to the exact form of the

intensity weighting. We tried an alternative approach to define
the intensity-weighted edge lengths, eq 6, and obtained the
exact same result:
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+
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( , )
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j k
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j k
w

2

(6)

■ DISCUSSION
Comparison with Alternative Methods. Separating

Objects. Given a set of points corresponding to different
objects, while it should be possible in principle to calculate by
brute force the pairwise separation distances rather than
perform Delaunay triangulation, to do so can be very
computationally expensive and easily exceeds the maximum
computer memory when the number of points is large.
A quantitative comparison of computational time is

presented in Figure 1c. The computational time grows nearly
linearly with the number of points for Delaunay triangulation,
but for the brute-force strategy it grows quadratically, with
more details given in the Supporting Information. The reason
for the near linear computational time for Delaunay
triangulation is that unlike the brute-force method, this
calculation is local. Subgraphs of the triangulation are
insensitive to vertices far away from the region. For example,
the divide and conquer algorithm recursively draws a line to
split the vertices into two sets and computes the Delaunay
triangulation of each set. The two sets are then merged along
the splitting line, and with fast merge operation, the total
running time is O(n log n).28 There exist various alternative
algorithms to accomplish this. In terms of memory require-
ments for computation, empirically we observed that in Matlab

Figure 5. Example of identifying the backbone of fluorescently labeled
λ-DNA molecule (images taken from ref 8). The raw image (a) is first
binarized (b) and Delaunay triangulation (DT) is constructed on the
points that were set to unity in the binarized image. The minimum
spanning tree (MST) of the Delaunay triangulation edges were found
using either the edge length (d) or the edge length normalized by
intensity (e). These alternative ways of defining weight give different
MST and different longest paths (red). Colors of the DT edges in (e)
represent the intensity of the edge with red being the highest and blue
being the lowest. The longest paths of the MSTs, with intensity in (d)
and without intensity in (e), are plotted in black and red, respectively,
over the original image in (a). (c) Shows the backbone identified with
the skeletonization morphological operation.
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while 100 000 data points require only about 1.6 GB of RAM
when using Delaunay triangulation, 30 000 points computed
using brute force already require more than 24 GB of RAM,
which exceeds what common computers have. To put this into
perspective, readers should consider that 30 000 data points are
commonly acquired in typical particle tracking experiments.
This is evident when one considers that particle tracking typical
spans at least 1000 frames with 10’s or even 100’s of objects in
each frame. Brute-force calculation is therefore prohibitively
demanding for efficient computation.
To separate objects, an important advantage of Delaunay

triangulation is that, unlike other clustering methods, it makes
no assumption about the shape, size distribution, or number of
objects. For example, K-means5 requires the number of clusters
as an input and cannot separate the objects correctly unless this
input is correct. It then assigns all points to the cluster centers
to which they are closest and iteratively updates the centers
until the total distance is minimized. K-means effectively divides
space into spherical regions; when dealing with nonspherical
objects, parts of an object can be unwittingly assigned to the
circle of another object. This was clearly seen in Figure 2j.
Similarly, if there is a wide distribution of object sizes, parts of a
large object might be closer to the center of a nearby small
object than to its own center, resulting in mistaken
identification. These problems limit the usefulness of K-
means to spherical objects with similar sizes. In spite of these
limitations, K-means is used fairly frequently in the current
literature because of its ease of implementation. In this paper,
we emphasize that Delaunay triangulation can do better. The
methods presented here can be implemented easily because
most common software packages contain implementations of
Delaunay triangulation. For example, to accomplish Delaunay
triangulation, we routinely employ Matlab and compute the
minimum spanning tree using the MatlabBGL graph library.27

One limitation of using Delaunay triangulation to separate
objects, which is also a limitation for other clustering
techniques, is that when two objects are very close, it becomes
difficult to separate them. This can be mitigated by inspecting
locally to remove edges that are longer than their neighbors and
also edges that link two objects, using the methods that we have
described in detail above. By setting a relatively high threshold
globally and removing local inconsistencies afterward, the
combination of Delaunay triangulation with local edge removal
can be robustly applied to processing large data sets.
Connecting Trajectories. Beyond this, Delaunay triangu-

lation is a natural solution to the endemic problem of how to
connect missing frames in trajectories. When it comes to
connecting trajectories, it is true that frame-to-frame compar-
ison can be extended to include neighboring frames if frequent
frames are missing, but this requires arbitrary judgment, such as
how many neighboring frames to include, and what to do when
a point is closer to the current point in space than another
point, yet is further removed in time. Delaunay triangulation
condenses all the above considerations into the single question
of equivalence scales of the temporal and spatial axes. This
makes the problem much easier and more quantitative to
approach. For example, for the special case of STORM17

experiments, the experimental design ensures that the spatial
positions of the fluorophores do not change, so the temporal
scale can be set to be much smaller than the spatial scale to
make jumps in space very unlikely, and this assists in closing
gaps in time. This is in the same spirit as the maximum
likelihood based statistical method to find the most likely set of

fluorophore positions.29 As in separating objects, when two
points are too close, Delaunay triangulation can combine the
respective trajectories to which they belong and the same local
edge removal steps can be used to separate the trajectories.
To extend this method to higher dimensional data (such as

4D, three spatial dimensions and 1 time dimension) is easily
accomplished. In Matlab, one uses the provided N-dimensional
Delaunay triangulation function “delaunayn”. Alternatively,
Qhull provides a freely available, open source implementation
of the Quickhull algorithm,30 a commonly used N-dimensional
Delaunay triangulation algorithm. Within Mathematica, an
interface intended to facilitate the use of Qhull is provided by
Wolfram Research.

Identifying Backbones. There exist alternative, well-
established skeletonization methods that work well when all
the pixels of an object can be identified, in other words, when
there are no holes and scattered points due to noise or
nonuniformity.31 However, often this is not the case with
fluorescence or bright field images because labeling intensity
and refractive index can vary from point to point. The current
method based on Delaunay triangulation has a higher tolerance
of missing points as the general structure of the minimum
spanning tree is not easily affected by a few missing points.
Another advantage over morphological methods is that the
current method is able to take into account the pixel intensities.
It is interesting that the morphological operation of
skeletonization (Figure 5c) gives the same backbone as the
minimum spanning tree without intensity normalization. The
comparison highlights the importance of using the intensity
information when seeking to identify the backbone of an object.
As an alternative when points in an object are scattered, the

most competitive alternative to Delaunay triangulation is
probably the B-spline,32 which fit a smooth curve to the
point cloud. Variations of B-spline curve fitting exist,33 but
generally, B-spline-based methods have difficulty when dealing
with sharp turns or large thickness variation along the
backbone.34 The minimum spanning tree of Delaunay
triangulation is less sensitive to these issues. But a limitation
of using backbone as a representation of object shape is that
when objects are close to spherical there is not well-defined
longest path, so there is no unique backbone. Another
limitation is that the method is most accurate within objects,
less so toward their ends.

■ CONCLUSION
The proposed methods can enhance the current capabilities of
particle tracking algorithms by allowing irregular shaped objects
to be separated and have their shape characterized by the
backbone as well as providing an easy way to connect
trajectories with frequent missing frames. Applications that
can gain the most benefit by adopting these methods include
single molecule studies of polymer conformation dynamics,20

cell morphology studies,19 and super-resolution imaging
techniques that are based on photoactivation cycles.17
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