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Figure S1.  Velocity autocorrelation function Cv(τ) plotted against time lag τ on linear scales, 
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position, τ is the delay time, and ε  =0.05 s.  A slight anti-correlation at 0.1 s quickly decays to 0.  

The anti-correlation increases slightly with increasing volume fraction.  Colors indicate ϕ=0 

(black), ϕ=0.15 (brown), ϕ=0.30 (green), ϕ=0.45 (red), ϕ=0.55 (blue).  (Inset) a magnified 

view of the anti-correlation region.     

 



 

Figure S2.  The distribution of ergodic breaking parameter ξ defined in reference 1.  Checking 

for dynamic heterogeneity by inspecting the time-averaged mean square displacement (MSD) of 

individual trajectories, we calculated the ratio of MSD of individual trajectories to the ensemble 

average, specifically 
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denotes ensemble average.  Here 3.3τ = s and 0.1∆ = s, where τ denotes how long each trajectory 

lasts and is selected to be sufficiently long to ensure the accuracy of ξ but sufficiently short that 

the distribution of ξ can be calculated from many trajectories.  The symbol ∆ is the time interval 



used to calculate MSD to reflect the dynamic spread.  Note the slight tendency for the 

distribution of ξ to broaden with increasing volume fraction.  Colors:  same as in Figure S1. 

 

Figure S3.  No aging or change of mobility was observed for the sample at ϕ=0.55.  This sample 

was pre-equilibrated for 12 hrs on the microscope stage before the experiment, then 

measurements were made for an additional 8 hrs.  The dashed line shows the ensemble-averaged 

diffusivity.   



 

Figure S4.  Conditional displacement of successive time intervals.  The abscissa is displacement 

in the first time interval.  (Upper panel)  The ordinate is root mean square displacement in the 

second time interval.  The U-shaped pattern centered around zero displacement, observed in the 

presence of matrix particles but not in pure solvent, shows that large displacements are likely 

followed by large displacements in the presence of matrix particles. This trend grows with 

increasing volume fraction.  Time interval is 0.1 s for each ϕ.  (Lower panel) The ordinate, mean 



displacement in the second time interval, equals zero regardless of volume fraction.  Time 

interval is 0.2 s (ϕ=0, black), and 0.1 s otherwise.  Colors indicate ϕ=0.15 (brown), ϕ=0.30 

(green), ϕ=0.45 (red), ϕ=0.55 (blue).   

 

Figure S5.  Conditional displacement of the Nth step given the displacement of the 1st step, with 

successive time intervals of 0.1 s and N up to a maximum of 10, at volume fraction ϕ=0.45.  The 

U-shaped pattern flattens slowly with increasing N.  The horizontal dashed line shows the 

expected displacement value for zero correlation, calculated from the mean square displacement 

at this time.  The data are plotted for N=2 (*), 3 (+), 4 (×), and 10 (○) corresponding to a lag time 

of 0.1 s, 0.2 s, 0.3 s, and 0.9 s respectively.   

 

Table S1. 



φ mean surface 
distance 

between matrix 
particles (µm)* 

tcollision (s)** ttransit (s)┼ ltransit (µm)╫ 

15% 2 6 1.0 1.0 

30% 1.1 2 1.0 0.9 

45% 0.7 0.8 0.6 0.6 

55% 0.5 0.4 0.4 0.4 

 

* estimated from inter-particle distance between matrix particles at a given φ. 

** estimated from mean surface distance and probe diffusivity in solvent. 

┼,╫ estimated from Figure 1b.   

  

Estimate of timescales 

From data in the literature, the sub-diffusive to diffusive transition for matrix particles of this 

same size at volume fraction 0.45 occurs at ~100 s.2  Also from literature, the time for a matrix 

particle to diffuse its own size at ϕ=0.45 is estimated to be ~100 s.3  We identify this timescale 

with the longest relaxation timescale of the matrix.  Because the matrix particles diffuse so 

slowly and are obstructed by their neighbors, over our experimental window of <10 s the matrix 

structure would not significantly rearrange.  For example, movie S2 shows Brownian motion of 

matrix particles at ϕ=0.30.   

Inspection of the velocity autocorrelation function implies that collision and back scattering 

events occur on the time scale ~0.1 s (Figure S1).  Analysis of the mean-square displacement 



implies that the transition time from diffusion to sub-diffusion in this interstitial diffusion 

process is ~1 s (Figure 1b).  This longer time is reasonable physically, as the transition should 

require several collision and back scattering events.  In fact, the implied length scale is calculated 

to be roughly the average surface distance between matrix particles at the respective volume 

fractions (Table S1).  

 

Movie captions 

Movie S1.  Video of tracer Brownian motion taken using epifluorescence microscopy.  The 0.28 

µm diameter tracer particles are mixed into a suspension of larger 2.2 µm diameter matrix 

particles at volume fraction ϕ=0.55 and hard sphere interactions.  The movie plays in real time.  

The field of view is 80×80 µm2. 

Movie S2.  Video of matrix particle diffusion, which is far slower than diffusion of smaller tracer 

particles.  The 3 µm matrix particles are fluorescently labeled.  The suspension has ϕ=0.30.  The 

movie is taken using HILO microscopy, which is a light sheet microscopy that illuminates a thin 

layer a few microns removed from the surface.4  The movie plays in real time.  The field of view 

is 45×45 µm2. 
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